
NEAT
A New, Evolutive API and Transport-Layer Architecture for the Internet

H2020-ICT-05-2014
Project number: 644334

Deliverable D4.2
Final version of NEAT-based tools

Editor(s): Zdravko Bozakov
Contributor(s): Anna Brunstrom, Dragana Damjanovic, Gorry Fairhurst, Audun Fosselie Hansen,

Tom Jones, Naeem Khademi, Andreas Petlund, David Ros,
Tomasz Rozensztrauch, María Isabel Sánchez Bueno, Daniel Stenberg,
Michael Tüxen, Felix Weinrank

Work Package: 4 / Validation and evaluation
Revision: 1.0
Date: August 31, 2017
Deliverable type: R (Report)
Dissemination level: Public

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

Abstract

This document presents the final versions of developed tools that are instrumental to test-

ing and evaluating various aspects of the NEAT stack. We classify these tools into two cat-

egories: 1) measurement and traffic generation tools, used to carry out experiments that

motivate design choices for the NEAT System, and to assess the behaviour of NEAT ap-

plications in different scenarios, and 2) diagnostics tools, used to verify correctness of the

NEAT System prototype and to debug the behaviour of its components.

Furthermore, the document provides a test plan outlining the testing strategies and en-

vironments for the core NEAT library as well as the selected industrial use cases. To this

end, we present our environment for performing automated testing of the core NEAT stack

and lay out testbeds, test procedures and topologies for the selected industrial use cases.

Participant organisation name Short name

Simula Research Laboratory AS (Coordinator) SRL

Celerway Communication AS Celerway

EMC Information Systems International EMC

MZ Denmark APS Mozilla

Karlstads Universitet KaU

Fachhochschule Münster FHM

The University Court of the University of Aberdeen UoA

Universitetet i Oslo UiO

Cisco Systems France SARL Cisco

2 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

Contents

List of Abbreviations 5

1 Introduction 9

2 NEAT-based tools 9

2.1 Summary of tools . 9

2.2 Measurement and traffic generation tools . 10

2.2.1 phttpget . 10

2.2.2 thttpd . 11

2.2.3 NEAT web server . 12

2.2.4 Middlebox measurement tools . 12

2.2.5 tneat . 17

2.2.6 pReplay . 17

2.2.7 Nghttp2 . 18

2.2.8 Multi-homed TCP-based download manager . 18

2.3 Diagnostics tools . 19

2.3.1 Buildbots . 19

2.3.2 Logging . 20

2.3.3 Policy Manager Diagnostics . 20

2.3.4 System-wide NEAT statistics (neatstat) . 21

3 Test plan 22

3.1 Core library testing . 23

3.1.1 Test strategy . 23

3.1.2 Test environment . 23

3.1.3 Test procedures . 24

3.2 Consortium testbeds . 25

3.2.1 MONROE . 25

3.2.2 INFINITE . 29

3.3 Use case testing . 30

3.3.1 Mozilla use case . 31

3.3.2 Cisco use case . 33

3.3.3 Celerway use case . 35

3.3.4 EMC use case . 37

4 Conclusions 40

References 42

A NEAT Terminology 43

B Example JSON file for a fling test 45

C How to build and test NEAT applications in MONROE 47

C.1 Creating NEAT-enabled MONROE experiments . 47

C.2 MONROE metadata, Policy Manager and CIB . 50

3 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

D Paper: fling: A Flexible Ping for Middlebox Measurements 52

E Paper: How to say that you’re special: Can we use bits in the IPv4 header? 62

4 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

List of abbreviations

AAA Authentication, Authorisation and Accounting

AAAA Authentication, Authorisation, Accounting and Auditing

API Application Programming Interface

BE Best Effort

BLEST Blocking Estimation-based MPTCP

CC Congestion Control

CCC Coupled Congestion Controller

CDG CAIA Delay Gradient

CIB Characteristics Information Base

CM Congestion Manager

DA-LBE Deadline Aware Less than Best Effort

DAPS Delay-Aware Packet Scheduling

DCCP Datagram Congestion Control Protocol

DNS Domain Name System

DNSSEC Domain Name System Security Extensions

DPI Deep Packet Inspection

DSCP Differentiated Services Code Point

DTLS Datagram Transport Layer Security

ECMP Equal Cost Multi-Path

EFCM Ensemble Flow Congestion Manager

ECN Explicit Congestion Notification

ENUM Electronic Telephone Number Mapping

E-TCP Ensemble-TCP

FEC Forward Error Correction

FLOWER Fuzzy Lower than Best Effort

FSE Flow State Exchange

FSN Fragments Sequence Number

GUE Generic UDP Encapsulation

H1 HTTP/1

5 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

H2 HTTP/2

HE Happy Eyeballs

HoLB Head of Line Blocking

HTTP HyperText Transfer Protocol

IAB Internet Architecture Board

ICE Internet Connectivity Establishment

ICMP Internet Control Message Protocol

IETF Internet Engineering Task Force

IF Interface

IGD-PCP Internet Gateway Device – Port Control Protocol

IoT Internet of Things

IP Internet Protocol

IRTF Internet Research Task Force

IW Initial Window

IW10 Initial Window of 10 segments

JSON JavaScript Object Notation

KPI Kernel Programming Interface

LAG Link Aggregation

LAN Local Area Network

LBE Less than Best Effort

LEDBAT Low Extra Delay Background Transport

LRF Lowest RTT First

MBC Model Based Control

MID Message Identifier

MIF Multiple Interfaces

MPTCP Multipath Transmission Control Protocol

MPT-BM Multipath Transport-Bufferbloat Mitigation

MTU Maximum Transmission Unit

NAT Network Address (and Port) Translation

NEAT New, Evolutive API and Transport-Layer Architecture

6 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

NIC Network Interface Card

NUM Network Utility Maximization

OF OpenFlow

OS Operating System

OTIAS Out-of-order Transmission for In-order Arrival Scheduling

OVSDB Open vSwitch Database

PCP Port Control Protocol

PDU Protocol Data Unit

PHB Per-Hop Behaviour

PI Policy Interface

PIB Policy Information Base

PID Proportional-Integral-Differential

PLUS Path Layer UDP Substrate

PM Policy Manager

PMTU Path MTU

POSIX Portable Operating System Interface

PPID Payload Protocol Identifier

PRR Proportional Rate Reduction

PvD Provisioning Domain

QoS Quality of Service

QUIC Quick UDP Internet Connections

RACK Recent Acknowledgement

RFC Request for Comments

RTT Round Trip Time

RTP Real-time Protocol

RTSP Real-time Streaming Protocol

SCTP Stream Control Transmission Protocol

SCTP-CMT Stream Control Transmission Protocol – Concurrent Multipath Transport

SCTP-PF Stream Control Transmission Protocol – Potentially Failed

SCTP-PR Stream Control Transmission Protocol – Partial Reliability

7 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

SDN Software-Defined Networking

SDT Secure Datagram Transport

SIMD Single Instruction Multiple Data

SPUD Session Protocol for User Datagrams

SRTT Smoothed RTT

STTF Shortest Transfer Time First

SDP Session Description Protocol

SIP Session Initiation Protocol

SLA Service Level Agreement

SPUD Session Protocol for User Datagrams

STUN Simple Traversal of UDP through NATs

TCB Transmission Control Block

TCP Transmission Control Protocol

TCPINC TCP Increased Security

TLS Transport Layer Security

TSN Transmission Sequence Number

TTL Time to Live

TURN Traversal Using Relays around NAT

UDP User Datagram Protocol

UPnP Universal Plug and Play

URI Uniform Resource Identifier

VoIP Voice over IP

VM Virtual Machine

VPN Virtual Private Network

WAN Wide Area Network

WWAN Wireless Wide Area Network

8 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

1 Introduction

A goal of the NEAT project is to produce deployable, working code throughout the entire life cycle of

the project. All partners have contributed to a common code base to develop the NEAT System and

core library defined in WP1 and WP2, as well as extensions in WP3. Best practices have been followed

for collaborative code development, including a strong focus on testing and validation. This approach

has fostered high interaction between the partners and is expected to yield testable, high quality code.

Work Package 4 is comprised of three tasks that will allow the project to assess and demonstrate

the benefits that the NEAT approach brings to networked applications:

• Porting key example applications selected in WP1 to the NEAT architecture and APIs.

• The development of test tools for measurements and performance analysis of the NEAT trans-

port system.

• Experiments using the software developed in the two previous items to evaluate and validate the

use cases defined in WP1, leveraging test facilities brought into the project by the partners.

This document reports on activities in WP4 carried out in months 13-30. The main scope of this

report is on Task 4.2, focused on: (a) producing final versions of the developed test tools, (b) defin-

ing a test plan for validation and performance analysis. The document updates Sections 3 and 4 of

Deliverable D4.1 [14].

The rest of this document is structured as follows. In Section 2, we describe the final versions of

the auxiliary tools implemented or extended during the project to support different aspects of the

development of NEAT. In Section 3 we present the strategy and environment for testing the NEAT

software during its development cycle, as well as the test plan for carrying the experiments needed

to validate the functionality and performance of the NEAT library in the context of the industry use

cases. Finally, Section 4 concludes the document.

2 NEAT-based tools

2.1 Summary of tools

Table 1 summarises the diverse auxiliary software packages, either developed or adapted by the project,

used both to test the NEAT stack and its functionalities, and to assist in the design and development

process of the NEAT System. Separate means a tool is independent from the NEAT library but allows to

test some specific aspect of interest to NEAT. NEAT-based refers to a software program that is actually

built on top of the NEAT library, and that uses the NEAT User API. Built-in refers to a tool that has been

integrated into the NEAT System. The table also indicates, where relevant, to what Application Class

each tool belongs to, as defined in the NEAT architecture [17, Figure 11]. As a reminder, Class 0 refers

to non-NEAT enabled applications, i.e., apps that do not use the NEAT User API (either directly or via

some middleware), whereas Class-1 apps are directly built on top of this API. Class-4 apps make use

of Policy and/or Diagnostics interfaces, but do not exchange data via the NEAT User API.

In the following we describe each of these tools and how they are used in NEAT.

9 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

Table 1: Software tools produced or modified by the project, for assisting with the design, development
and testing of the NEAT System.

Tool category Tool name
Relation to the

NEAT stack App class

Measurement and
Traffic generation

phttpget Separate 0

thttpd Separate 0

NEAT web server NEAT-based 1

edgetrace Separate 0

fling Separate 0

PATHspider Separate 0

tneat NEAT-based 1

pReplay Separate 0

Nghttp2 NEAT-based 1

Multi-homed download manager NEAT-based 0 and 1†

Diagnostics

Buildbots Separate N/A

Logging Built-in N/A

Policy Manager Diagnostics Built-in N/A

System-wide NEAT statistics (neatstat) Separate 4

† There are in fact two versions of this software used, one NEAT-enabled (class 1), another non NEAT-enabled (class 0).

2.2 Measurement and traffic generation tools

This section presents several measurement and traffic generation tools used to evaluate areas that

impact the performance and behaviour of the NEAT system. Such areas include the performance of

transport protocols across Internet paths as well as the impact of middleboxes on the used transport

protocols. The findings obtained from these tools influence the design of protocol selection mecha-

nisms and associated default policies used by NEAT.

2.2.1 phttpget

URL https://github.com/NEAT-project/HTTPOverSCTP/tree/multistream

Summary Minimal HTTP client with pipelining support, extended by the project to support

SCTP. Used to analyze the benefits and disadvantages of using multiple SCTP streams

instead of multiple TCP connections.

Phttpget [6] is a minimal HTTP client with pipelining support. We utilised a modified version of

the tool in combination with pReplay (§ 2.2.6) and thttpd (§ 2.2.2), to analyze the benefits and disad-

vantages of using multiple SCTP streams instead of multiple TCP connections, as reported in D3.1 [18,

Section 3.1.1].

Phttpget is included in FreeBSD where it is used for the internal update mechanism and the port-

snap tree1. The tool takes a remote server name and a list of one or more files as a command-line

argument and downloads these files into the current directory. We chose phttpget because of its small

1https://www.freebsd.org/doc/handbook/ports-using.html

10 of 66 Project no. 644334

https://github.com/NEAT-project/HTTPOverSCTP/tree/multistream
https://www.freebsd.org/doc/handbook/ports-using.html

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

size of about 500 lines of code and its support for HTTP pipelining. Without HTTP pipelining, the

client can only have a single request in flight and has to receive the server’s response completely be-

fore sending the next request. HTTP pipelining allows the client to have multiple requests in flight

without waiting for the server’s response.

We extended phttpget with SCTP support, an interface to handle requests from external applica-

tions, and a statistics mechanism to track request and response handling in detail [4]; an example

log is provided in Listing 1. In addition to reading a list of files given via command-line arguments,

phttpget opens a named pipe where external applications can request files from the web server via

phttpget. If phttpget uses a SCTP connection with multiple streams, every request is scheduled to a

different stream and—in contrast to TCP pipelining—only one request per SCTP stream is in flight.

The request-to-stream mapping allows the server to send its responses to the client without worrying

about reordering. This solves the head-of-line blocking issue of TCP’s pipelining where the responses

have to arrive in the same order they have been sent by the client.

After phttpget receives the server’s response, it reports detailed information about the request: http

status code, payload- and header-size and the time span between request and response. If the re-

sponse has been scheduled by an external application, phttpget sends this information via the named

pipe to the application.

1 [0 . 0 0 0 0 0 2] [PRG] S e t t i n g s − timeout : 15

2 [0 . 0 0 0 1 6 5] [PRG] S e t t i n g s − protocol : SCTP

3 [0 . 0 0 0 2 5 3] [PRG] S e t t i n g s − p i p e l i n i n g : enabled

4 [0 . 0 0 0 3 4 4] [PRG] S e t t i n g s − max SCTP streams : 6

5 [0 . 0 0 4 5 8 0] [PRG] i n t e r a c t i v e mode − reading from PIPE

6 [0 . 0 4 7 5 0 9] [PRG] #1 − 404 − / pages /amazon . es /www. amazon . es / index . html − sctp s i d : 0

7 [0 . 0 4 9 9 4 1] [PRG] #2 − 200 − / missing /www. amazon . es / a j a x / getntent . html − sctp s i d : 0

8 [0 . 0 5 0 5 2 1] [PRG] #3 − 200 − / missing / ecx . images−amazon . com/ images / I /41H. jpg − sctp s i d : 1

9

10 . . .

11

12 [0 . 2 7 3 3 4 4] [PRG] #67 − 200 − / pages /amazon . co . uk/ images / I /51wQhdhxVTL . _SL135_ . jpg − sctp s i d : 0

13 [0 . 2 7 5 7 7 0] [PRG] ###### STATS ######

14 [0 . 2 7 5 9 1 7] [PRG] requests : 67

15 [0 . 2 7 5 9 9 6] [PRG] − # 200 : 41

16 [0 . 2 7 6 0 7 9] [PRG] − # 404 : 26

17 [0 . 2 7 6 1 5 7] [PRG] − # other : 0

18 [0 . 2 7 6 2 3 5] [PRG] bytes header : 16918

19 [0 . 2 7 6 3 1 3] [PRG] bytes payload : 531176

Listing 1: Log file from phttpget loading a sample website over SCTP.

2.2.2 thttpd

URL https://github.com/nplab/thttpd/tree/multistream

Summary Modified thttpd [9] web server with SCTP support. This includes the mapping of mul-

tiple http requests to distinguish SCTP streams over a single SCTP association.

The thttpd web server [9] is a small and well tested web server written in C which runs on multiple

platforms. In addition to the extensions and changes reported in Deliverable 3.1 [18], we extended

thttpd with HTTP pipelining and new SCTP features. Due to its support of TCP, SCTP and SCTP via

UDP, thttpd is an important part of our automated testing environment (§ 2.3.1) and is used for several

measurements like the comparison of HTTP pipelining via TCP and SCTP.

11 of 66 Project no. 644334

https://github.com/nplab/thttpd/tree/multistream

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

2.2.3 NEAT web server

URL https://github.com/NEAT-project/neat/blob/master/examples/server_http.c

Summary Simple NEAT-enabled web server supporting HTTP 1.1 and TLS.

In addition to the basic HTTP behavior of closing the transport connection after every finished

response, this simple, NEAT-enabled web server also supports the Keep-Alive extension allowing to

respond to several requests without closing the transport connection after every request, resulting in

less overhead and a faster page load time.

The server supports all reliable transport protocols which are offered by the NEAT library and is

part of the automated continuous integration system (§ 3.1), where it delivers static websites as well

as large binary data blobs.

In addition to several tests where we compared the performance and benefits of the particular

transport protocols for HTTP transfers, we also used this web server to analyze the benefits of trans-

parent flow mapping for NEAT, described in Deliverable D3.2 [19].

2.2.4 Middlebox measurement tools

In today’s Internet we see an increasing deployment of middleboxes. While middleboxes provide in-

network functionality that is necessary to keep networks manageable and economically viable, any

packet mangling—whether essential for the needed functionality or accidental as an unwanted side

effect—makes it more and more difficult to deploy new protocols or extensions of existing protocols.

In this section we describe three tools, edgetrace, fling and PATHspider, developed to assess the

behaviour and impact of middleboxes on transport protocols and to identify the deployment status

of middleboxes in the Internet. The findings obtained using these tools directly benefit the decision-

making process in NEAT. They enhance our understanding of path reachability in the following sce-

narios and help with developing necessary fallback mechanisms in NEAT:

• IPv4 vs. IPv6 with SCTP/UDP or native SCTP.

• QUIC (with both IPv6 and IPv4).

• Different DSCP values (more specifically with the two previous scenarios).

• ECN header bits.

edgetrace

URL https://trace.erg.abdn.ac.uk/

Summary Tool to measure DSCP mark survivability from multiple network edges to a single

point in the core of the Internet.

Edgetrace is a tool to measure DSCP mark survivability from multiple network edges to a single

point in the core of the Internet. Generating a diverse set of network paths requires edgetrace to be

run by people from their own machines from their homes, local coffee shops and their places of work.

Edgetrace is run by volunteers from their personal machines, this places tight restrictions on what the

tool is able do while performing measurements.

12 of 66 Project no. 644334

https://github.com/NEAT-project/neat/blob/master/examples/server_http.c
https://trace.erg.abdn.ac.uk/

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

Client

Server

START

IP UDP

STATUSBrowser

UDP DSCP

HTTPS

loglog

processSTART REQ

Token

DSCP + Token

tcpdump

Figure 1: Edgetrace architecture.

There are two components to edgetrace, a very simple client and a server backend, both written

in the Go programming language. The client was made available as a single self-contained binary to

increase the chance of the tool being run.

The server performs two roles, first it generates sessions for the client to use and acts as an end

point for UDP datagrams, second it performs a packet capture collecting IP fields not made available

to the application in userspace. The server generates files that make it possible to match received

datagrams to sessions, the capture log makes it possible to match sent DSCP values to received DSCP

values. The session makes it possible to detect network black holes.

The client portion of edgetrace connects to the backend server over https and requests an object

describing a session ID. This session creation mechanism allows the client to do connectivity assess-

ments to the endpoint server. The client tool is expected to be run on networks where the captive

portal might not have been passed yet, hence, edgetrace attempts to detect common network events

when trying to access a network with a captive portal.

Edgetrace retrieves the session ID from the server over HTTPS, the session ID is used to detect

unique runs of the tool. Each UDP packet edgetrace sends contains the session ID object with the

addition of initial TTL, original DSCP mark, operating system and a free-form string passed by the

user describing the network type. Edgetrace will then send out 10 packets for each DSCP mark to be

tested, with packets passed out at a rate of 5 packets per second.

Edgetrace was used to perform an edge measurement campaign from March to August 2017. The

measurement campaign was able to assess how DSCP marked traffic is treated from edge connections,

180 user-driven measurements were performed using the edgetrace tool. Data from the edgetrace

experiment has been combined with other measurements and is being prepared for publication.

13 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

fling

URL http://fling-frontend.nntb.no

Summary When developing protocol extensions, it is often important to know what will happen

to particular types of packets along a path (e.g. “If we add an option to this packet,

is it more likely to be dropped? Will the option often be removed?”). Fling allows for

experimentation of various protocols of interest. fling transmits packets from a pcap

file, following a dialogue defined in a JSON file, between fling clients and servers.

“Flexible ping” (fling) is a tool developed in the NEAT project that aims to address the need to know

exactly what middleboxes do. It combines the advantages of its prior work. Like TCPExposure [8], it

can carry out a dialogue between a server and a client and identify what middleboxes have done to

the packets belonging to the dialogue. Like Netalyzr [22], it allows to update the measurements with a

server-side only change; no new software installation is required. Also, like Tracebox [16], it can detect

which device along the path changed or dropped a packet. The fling tool does not need to be modified

to carry out new measurements, and its flexibility allows for a variety of different experiments to be

run.

Fling provides a capability to inject specific arbitrary packet formats between specific endpoints,

allowing protocol interactions to be studied. Fling is best suited to specific tests evaluating whether

new packet formats and new protocol features would be supported end-to-end. The preliminary re-

sults from fling measurements have motivated in NEAT the work on developing a application-level

QoS fallback mechanism referred to as “Happy Apps” in Deliverable D2.3 [21], as we found that non-

zero DSCP values may provoke consistent packet loss when traversing certain middleboxes.

A fling client is a static piece of software; it begins a test by pulling a test description from the server,

which it then executes. A test description is comprised of a pcap file containing the test packets and a

JSON file describing the test, specifically packet types, information about header fields, and the send-

ing/receiving sequences of the dialogue. It never contains addresses: a fling client always only talks

to a specified fling server configured through a command-line parameter. This allows to fully control

the dialogue and collect measurement results at the server for research use; it also serves as a security

measure, by ensuring that attackers cannot design tests that would turn fling clients into sources of

traffic towards some other hosts in the network. To avoid getting in the way of normal Internet usage

of fling users, the total maximum number of packets transmitted by fling is also statically configurable

by the client. Appendix B provides an example of a fling JSON file.

We have prototyped fling in Python, based packet capturing and manipulation on Scapy [7], and

prepared tests for 36 distinct protocols and protocol options. By preparing a test, we mean that we

have generated all needed packet traces to test a protocol or an option. Our preliminary evalua-

tion of fling included using traces we gathered from different vantage points with the participation

of 34 users (providing 3384 tests in total). The evaluation results of these tests are presented in [12]

(see Appendix D). The general goal of our preliminary evaluation was not to make general statements

about the support of specific protocols in the Internet, but rather to examine fling’s flexibility. The

preliminary results in [12] show that fling can perform all of the tests provided by prior work while

requiring no software update in order to perform new tests, making fling flexible to deploy. These re-

sults also include a variety of protocol tests over IP, with changes applied to the IP header (e.g., testing

options or unknown protocol numbers) and the TCP header (e.g., testing options or using a wrong

value in the Data Offset field).

14 of 66 Project no. 644334

http://fling-frontend.nntb.no

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

We also conducted a larger-scale measurement study of various protocols and protocol options

over both IPv4 and IPv6 networks. The study over IPv4 networks was done with 120 hosts from Ark2,

50 hosts from Planetlab and 30 hosts from NorNet3 using 35 fling servers whereas with IPv6 networks,

60 hosts from Ark and 15 hosts from NorNet were employed to use 22 fling servers. Interestingly, our

findings come in contrast with many of the currently-held beliefs about which protocol(s) are likely

to work across Internet paths. For example, we found that SCTP passes on virtually all measured

paths. Our findings give fresh insights about a set of protocols and options that are safe to be used

opportunistically. We believe that this will inform and have an impact on several ongoing debates at

the IETF and beyond. Fling is available from http://fling-frontend.nntb.no for public use.

PATHspider

URL http://pathspider.net

Summary PATHspider is a framework for performing and analyzing easily customized A/B tests.

PATHspider makes it easy to run large scale measurements on the Internet, with plug-

ins available to support a large range of protocols. PATHspider has been developed by

the MAMI EU project.

PATHspider [23] has been developed by the MAMI EU project4 and is publicly available from https:

//pathspider.net. NEAT is using PATHspider to generate measurement traces. In contrast to fling,

which has a client and a server component, PATHspider experiments are initiated by a client side only,

enabling large scale measurements of arbitrary Internet destinations.

For the evolution of the protocol stack, it is important to know which network impairments ex-

ist and potentially need to be worked around. While classical network measurement tools are often

focused on absolute performance values, PATHspider performs A/B testing between two different pro-

tocols or different protocol extensions to perform controlled experiments of protocol-dependent con-

nectivity problems as well as differential treatment. PATHspider is a framework for performing and

analyzing these measurements, while the actual A/B test can be easily customized.

PATHspider automates single-sided measurements of implemented protocols to very large num-

ber of target servers to evaluate whether the combination of paths and servers support particular con-

crete protocol features. PATHspider therefore is most suited to questions relating to whether features

have been widely deployed in the general Internet. It is being used in NEAT to evaluate support for

datagram network and transport options across the Internet.

The architecture of PATHspider is depicted in Figure 2. For each target hostname and/or address,

with port numbers where appropriate, PATHspider enqueues a job, to be distributed amongst the

worker threads when available. Each worker performs one connection with the “A” configuration and

one connection with the “B” configuration. The “A” configuration will always be connected first and

serves as the base line measurement, followed by the “B” configuration. This allows detection of hosts

that do not respond rather than failing as a result of using a particular transport protocol or extension.

These sockets remain open for a post-connection operation.

Packets are separately captured for analysis by the observer. First, the observer assigns each incom-

ing packet to a flow based on the source and destination addresses, as well as the TCP, UDP or SCTP

2http://www.caida.org/projects/ark/.
3https://www.nntb.no/.
4https://mami-project.eu

15 of 66 Project no. 644334

http://fling-frontend.nntb.no
http://pathspider.net
https://pathspider.net
https://pathspider.net
http://www.caida.org/projects/ark/
https://www.nntb.no/
https://mami-project.eu

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

Figure 2: PATHspider architecture.

ports when available. The packet and its associated flow are then passed to a function chain. The

functions in this chain may be simple functions, such as counting the number of packets or octets

seen for a flow, or more complex functions, such as recording the state of flags within packets and

analysis based on previously observed packets in the flow. For example, a function may record both

an ECN negotiation attempt and whether the host successfully negotiated use of ECN.

A function may alert the observer that a flow should have completed and that the flow information

can be matched with the corresponding job record and passed to the merger. The merger extracts the

fields needed for a particular measurement campaign from the records produced by the worker and

the observer.

Middlebox tool comparison Edgetrace is a specialised tool designed to measure a single case, UDP

DSCP mark survivability from network edges. Due to the need to be run from the edge of the network,

edgetrace has to be a paired down tool that is easy to run. Both fling and PATHspider are more flexible

and general tools, but require much more user setup to run.

Fling and PATHspider are complementary tools, targeting different locations for tool endpoints

(i.e., what paths are tested). PATHspider provides data about the support for existing transport mech-

anisms: ECN, UDP, DSCP, etc., in the general Internet, identifying in-network impairments that require

the endpoints to choose alternate transport mechanisms. On the other hand, fling allows for testing

of novel protocol mechanisms and whether these are supported in a specific context.

PATHspider has already been used to identify increased support for transparent passing of the ECN

code points through the Internet, and support by web servers when requested (results made available

via the MAMI project [25]). On the one hand, PATHspider experiments will continue to monitor sup-

port for ECN within the network. On the other hand, Fling can be used to determine if a specific

end-to-end path can take advantage of this ECN support, i.e., can the method be used at endpoints,

16 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

would the network appropriately handle advanced ECN (e.g., the proposed Accurate ECN feedback

extension [15]). In this way, PATHspider provides statistical data, and fling detailed understanding.

Fling has been used to identify a pathological case where some places black-hole specific DSCP

values. These findings were published in [11] (see Appendix E). Recent tests using a plug-in developed

for PATHspider followed up with large-scale measurements from the core to the Alexa top 1 million

web servers. In the path from core to server there was evidence that the same pathology could occur,

but that more than 99.9% of tested paths and servers showed no black-holing. The conclusion is that

this particular impairment likely only occurs in the access network or particular pieces of deployed

equipment, and generally would not be normally expected. Further fling experiments may help pin-

point more examples of the pathological cases where this does occur. This data can enable NEAT to

decide whether the anomaly is sufficiently important to justify the overhead of code that counters

black-holing for DSCPs.

2.2.5 tneat

URL https://github.com/NEAT-project/neat/blob/master/examples/tneat.c

Summary Benchmarking and traffic generation tool testing a wide variety of NEAT features.

Tneat is a benchmark tool written against the NEAT library which focuses on bandwidth measure-

ments and message handling for several flows. It has been specifically developed targeting the NEAT

library and covers several test applications: traffic generation, flow measurements and library opera-

tion analysis. It either operates as a saturated data source or as a data sink.

The tneat sender transmits a predefined number of messages with a predefined size to the receiver

and measures the time span between sending the first data and the callback event that all data has

been sent for every flow. On the receiver side, the application measures the time span between receiv-

ing the first and the last data. When a run has finished, both sides report statistics: run time, average

bandwidth and number of receive/send calls; the statistics are recorded for every flow. Besides the

number of flows, message size, amount of messages and maximum run time, the user can specify

a property which influences the behaviour of NEAT. By default tneat uses TCP and SCTP as trans-

port stacks, both with the same priority. Tneat’s use-cases are: analyzing throughput performance,

determining internal bottlenecks and testing buffering mechanisms. Table 2 lists tneat’s supported

command-line options.

Tneat also supports a self-contained mode where it opens a server and a client simultaneously

and communicates via loopback with itself. By covering the client- as well as the server-side in one

application, tneat is optimal for automated continuous integration tests (§ 3.1).

2.2.6 pReplay

URL https://github.com/NEAT-project/pReplay-public

Summary HTTP request generator, simulating the typical request behaviour of a web browser

loading a website. The tool supports TCP and SCTP.

PReplay is a HTTP request generator which walks through a dependency graph to simulate the

HTTP-request behaviour of a web browser loading a website.

17 of 66 Project no. 644334

https://github.com/NEAT-project/neat/blob/master/examples/tneat.c
https://github.com/NEAT-project/pReplay-public

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

Table 2: tneat command-line options.

Parameter Short description

-l message length in bytes (sender)

-L local run (server and client on localhost)

-n number of messages to send (sender)

-p listening / connecting port (receiver/sender)

-P NEAT properties (receiver/sender)

-T runtime limit (receiver/sender)

-v log level (receiver/sender)

In addition to the features reported in Deliverable 3.1 [18], we improved the SCTP support by

adding an interface to use phttpget as an alternative to libcurl. The user can choose between libcurl

and phttpget via a command-line argument. When using phttpget, pReplay runs a phttpget instance

in a separate thread and both applications communicate via named pipes. PReplay sends requests to

phttpget and after the requests have been handled by phttpget, it reports some information back to

pReplay. This includes the HTTP return code and the size of the responses header and payload.

PReplay is currently being utilized to analyse the impact of transport protocol features like multi-

streaming on HTTP performance.

2.2.7 Nghttp2

URL https://github.com/nplab/nghttp2/tree/weinrank/neat

Summary Modified Nghttp2 [5] web server, using the NEAT library to deliver websites via HTTP2

over TCP and SCTP.

The Nghttp2 [5] library is a popular HTTP/2 implementation included in a number of software

projects such as cURL and the Apache Web server to provide HTTP/2 functionality. We ported the

web server and client distributed as part of the Nghttp2 project to make use of the NEAT library. The

main motivation for this effort was the need for tools enabling the evaluation of the performance of

HTTP/2 web traffic on top of the various transport protocol stacks provided by the NEAT System.

As the client and server applications were already event-loop driven, porting did not require major

modifications to the core architecture of the applications. Using the NEAT User API allowed us even to

reduce the lines of code significantly, by about 20% for each application. The two applications remain

fully interoperable with regular TCP-based implementations, while being able to take advantage of

NEAT functions.

2.2.8 Multi-homed TCP-based download manager

URL https://www.neat-project.org/resources/#tools

Summary Multi-homed TCP-based download manager allowing to demonstrate the throughput

benefits of using NEAT’s Policy Manager (PM).

18 of 66 Project no. 644334

https://github.com/nplab/nghttp2/tree/weinrank/neat
https://www.neat-project.org/resources/#tools

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

Table 3: Celerway’s CIB mobile broadband properties.

Property Possible values

Technology mode, submode (LTE, 3G, 2G)

Signal Quality For 2G, 3G: RSSI, RSCP, EcIo

For LTE: RSSI, RSRP, RSRQ

Cell location LAC, CID

Network operator oper (MCCMNC code)

Device state device_state, ipaddr

Applications running in a multi-homed environment have the possibility to choose an interface to

use for their networking needs. The problem they face, though, is that usually they have no knowledge

to make a reasonable choice. Typically, they use the default interface or rely on the user to choose one.

For the purposes of testing its use case, Celerway has developed a simple multi-homed, TCP-based

download manager. This tool is a C++ application that uses the NEAT library5, takes advantage of the

NEAT PM and selects the interface that best suits its requirements. The tool is written with mobile

broadband networks in mind and expects Celerway CIB properties to be co-installed on the host.

The interface selection is based on the properties requested by the user in command-line argu-

ments. For instance, the user can request the tool to prefer LTE connections over WCDMA (3G) or

GSM (2G) by providing the mode property (see Table 3 for the list of properties). The tool outputs av-

erage download speed and makes it possible to compare interfaces with various characteristics. The

tool will be made available as an application in the NEAT implementation in MONROE as described

in § 3.2.1.

2.3 Diagnostics tools

There are several mechanisms for diagnostics and runtime analysis of the NEAT stack, outlined below.

In addition to the Buildbot system, which is used to identify compile time issues, the NEAT library

provides logging facilities at both the level of individual NEAT applications and the Policy Manager,

and the neatstat tool provides system-wide statistics. These mechanisms enable application devel-

opers and NEAT contributors to analyse choices made by NEAT throughout the lifetime of a NEAT

connection.

2.3.1 Buildbots

To ensure a high code quality, we use the Buildbot Continuous Integration Framework [1]. The Build-

bot framework is a Python-based application suite which runs on multiple platforms and architec-

tures, this includes Linux, NetBSD, MacOS X and FreeBSD on Intel and ARM systems. The Buildbot

Master is the central controller which schedules build tasks to the Build Slaves and displays the col-

lected results on a website.

This automated Continuous Integration Framework gives the NEAT developers instant feedback

about changes in the source code. Details about the test procedures and setup are given in Section 3.1.

5For the experiments in Celerway’s use case testing (§ 3.3.3), a non-NEAT enabled version is also used, for comparison pur-
poses.

19 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

Table 4: NEAT log levels.

Value Short description

NEAT_LOG_OFF Log system completely deactivated

NEAT_LOG_ERROR Show NEAT internal errors

NEAT_LOG_WARNING Same as previous one + warnings

NEAT_LOG_INFO Same as previous one + informational messages

NEAT_LOG_DEBUG Same as previous one + verbose debug messages

2.3.2 Logging

The NEAT library includes a logging mechanism to give users and developers a detailed insight about

its internal operations. Table 4 shows the five log-levels of the NEAT library, from completely disabling

the log messages to a verbose debug output. Log messages begin with the elapsed time since the NEAT

library has been initialized, followed by the event level and the event message.

NEAT applications can switch the log-level at any time by calling the neat_log_level function6,

this is useful to debug only specific sections of a NEAT application like connection establishment or

data transmission. The log messages displayed in the terminal have different colors, depending on

their level, allowing the user to quickly distinguish informational messages from errors or warnings.

By default, all log messages are written to stderr, the application can change this behavior and write

all messages into a separate log-file by calling neat_log_file7 at runtime.

In addition to controlling the log system at runtime, NEAT offers a compile-time option to enable

or disable the log system.

1 [0 . 0 0 0 8 3 6] [INF] A v a i l a b l e src−addresses :

2 [0 . 0 0 0 8 4 6] [INF] IPv4 : 1 2 7 . 0 . 0 . 1 / 0

3 [0 . 0 0 0 8 6 0] [INF] IPv6 : fe80 : : 1 / 0 p r e f 4294967295 v a l i d 4294967295

4 [0 . 0 0 0 8 7 2] [INF] IPv6 : : : 1 / 0 p r e f 4294967295 v a l i d 4294967295

5 [0 . 0 0 0 8 8 3] [INF] IPv6 : 2a02 : c6a0 : 4 0 1 5 : 1 0 : : 1 1 7 / 0 p r e f 4294967295 v a l i d

6 4294967295

7 [0 . 0 0 0 9 4 0] [INF] IPv6 : fe80 : : a00 : 2 7 f f : fed9 : 5 3 c8 /0 p r e f 4294967295 v a l i d

8 4294967295

9 [0 . 0 0 0 9 5 2] [INF] IPv4 : 2 1 2 . 2 0 1 . 1 2 1 . 1 1 7 / 0

10 [0 . 0 0 0 9 6 3] [DBG] neat_run_event_cb

11 [0 . 0 0 0 9 7 7] [DBG] neat_new_flow

12 [0 . 0 0 1 0 5 9] [DBG] neat_set_property

13 [0 . 0 0 1 1 3 6] [DBG] neat_set_operat ions

14 [0 . 0 0 1 1 4 7] [DBG] updatePollHandle

15 [0 . 0 0 1 1 5 8] [DBG] neat_open

Listing 2: Log output of an example NEAT-enabled application.

2.3.3 Policy Manager Diagnostics

The PM, comprised of the PIB and CIB components, allows application developers and administra-

tors to express intricate relationships between policies and system characteristics using a relatively

simple domain-specific language encoded using JSON. Nevertheless, the interdependencies across

user generated policy and CIB source entries may give rise to a considerable level of complexity or re-

sult in unintended behaviour, e.g., in the case of misconfigurations. To enable the debugging of such

6http://neat.readthedocs.io/en/latest/neat_log_level.html
7http://neat.readthedocs.io/en/latest/neat_log_file.html

20 of 66 Project no. 644334

http://neat. readthedocs. io/en/latest/neat_log_level. html
http://neat. readthedocs. io/en/latest/neat_log_file. html

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

Table 5: REST API endpoints for external access to the Policy Manager.

REST resource HTTP method Description

/pib GET lists all policies installed in the host

/pib/{uid} GET/PUT retrieve or upload a policy with a specific Unique Identifier (UID)

/cib GET lists all CIB nodes installed in the host

/cib/{uid} GET/PUT retrieve or upload a CIB node with a specific UID

/cib/rows GET retrieve all rows of the CIB repository

scenarios, the PM exposes interfaces for querying the internal state of the PIB and CIB repositories.

Administrators can use the interface to insert or delete entries into the PM repositories. The inter-

faces are implemented as REST endpoints listening on port 45888. Administrators may then access

the addresses listed in Table 5 using HTTP’s GET/PUT semantics.

In addition to debugging, these interfaces provide external entities (such as SDN controllers) access

to the PM.

Furthermore, the PM provides granular logging capabilities allowing users to trace which profile,

CIB information and policy rules are used in the construction of candidates throughout the stages of

the PM lookup process (described in Deliverable D2.3 [21]). The PM also performs syntax and consis-

tency checks for externally loaded JSON inputs. Finally, the PM provides an interactive debug mode

which can be used to inspect the state of the PIB, CIB and associated components. Listing 3 depicts

an excerpt of the interactive PM output including some debugging information.

2.3.4 System-wide NEAT statistics (neatstat)

The NEAT Flow Endpoint Statistics [21] can provide a NEAT application with information about the

NEAT instance created for the caller. A server, however, might have a large number of NEAT instances

using protocol stacks from both kernel and userspace. Server operators and administrators need a

way to collect global statistics across all NEAT instances on a machine in order to plan for scalability

or to debug misbehaving applications. The neatstat tool provides such functionality.

In order to provide a platform-independent interface, neatstat receives data from the PM of core

statistics collected from all the NEAT instances through CIB sources. The output of the tool is aggregate

and/or per-instance statistics that can aid in understanding the system-wide dynamics of the NEAT

instances. Examples of output are:

• Global number of open flows.

• Global bytes sent and received.

• Interface, protocol, and stack information for each flow.

• Remote endpoint(s) for each flow.

• Port numbers and state of the flow.

21 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

37 [INF] : Loading p o l i c y pib / example / t e s t 3 3 3 . p o l i c y . . .
38 [DBG] : Using s e l e c t o r : KqueueSelector
39 [DBG] : Use C t r l −\ to enter i n t e r a c t i v e debug mode .
40 I n i t i a l i z i n g REST s e r v e r on 0 . 0 . 0 . 0 : 4 5 8 8 8
41 Waiting f o r PM requests on / Users / bozakz / . neat / neat_pm_socket . . .
42 N o t i f y i n g c o n t r o l l e r at http : / / httpbin . org / post (repeat in 82 s)
43 [DBG] : announce addr : 1 0 . 7 3 . 6 4 . 6 1 : 5 9 2 3 4
44 ^\
45 ##################################### ENTERING INTERACTIVE DEBUG MODE ######################################
46

47 use C t r l−D to e x i t debug mode
48 >>> pib .dump()
49 == PIB START ===
50 0 . 23423 (remote_ip | 1 0 . 1 . 2 3 . 4 5) >> [[c ap ac it y | 1 0 0 0 0 . 0 −1 0 0 0 0 0 . 0]] = = [(t r a n s p o r t |UDP) , (t r a n s p o r t | TCP)

] = = [(MTU| 9 0 0 0 , 1 5 0 0)]
51 0 . t e s t 2 . pol (remote_ip | 1 0 . 1 . 2 3 . 4 5) >> [[c ap ac it y | 1 0 0 0 0 . 0 −1 0 0 0 0 0 . 0]] = = [(t r a n s p o r t |UDP) , (t r a n s p o r t | TCP)

] = = [(MTU| 9 0 0 0 , 1 5 0 0)]
52 0 . t e s t 3 3 3 (remote_ip | 1 0 . 1 . 2 3 . 4 5) >> [[c ap ac it y | 1 0 0 0 0 . 0 −1 0 0 0 0 0 . 0]] = = [(t r a n s p o r t |UDP) , (t r a n s p o r t | TCP)

] = = [(MTU| 9 0 0 0 , 1 5 0 0)]
53 2 . tcp options (is _w i re d | True)−−(MTU|1500.0 −9000.0) >> [(TCP_window_scale | True)]
54 5 . b u l k _ t r a n s f e r (data_volume_gb |2.0 −100000.0)−−(remote_ip | 1 0 . 1 . 2 3 . 4 5) >> [(t r a n s p o r t |UDP) , (t r a n s p o r t |

TCP , SCTP ,DCTCP)] = = [[capacity_gb | 1 . 0 −1 0 . 0]] = = [(bulk_data | True)] = = [(MTU| 9 0 0 0 , 1 5 0 0)]
55 5 . google_domain (domain_name |www. google . com,www. google . de) >> [[i n t e r f a c e | en7 , en0]]
56 5 . tcp_opt (remote_ip | 1 0 . 1 . 2 3 . 4 5) >> [[c ap ac it y | 1 0 0 0 0 . 0 −1 0 0 0 0 0 . 0]] = = [(t r a n s p o r t |UDP) , (t r a n s p o r t | TCP)

] = = [(MTU| 9 0 0 0 , 1 5 0 0)]
57 5 . t e s t . p o l i c y (remote_ip | 1 0 . 1 . 2 3 . 4 5) >> [[c ap ac it y | 1 0 0 0 0 . 0 −1 0 0 0 0 0 . 0]] = = [(t r a n s p o r t |UDP) , (t r a n s p o r t | TCP

)] = = [(MTU| 9 0 0 0 , 1 5 0 0)]
58 1 0 . sctp (t r a n s p o r t | SCTP) >> [[SCTP_DISABLE_FRAGMENTS | 0]] = = [[SO_SNDBUF| 4 0 9 6]] = = [[t r a n s p o r t | SCTP

] .] = = [[SCTP_NODELAY | False]]
59 100. mptcp_so (t r a n s p o r t |MPTCP) >> [[SO_MPTCP_ENABLED | True]]
60 100. tcp_so (t r a n s p o r t | TCP) >> [[TCP_NODELAY | False]]
61 === PIB END ==
62 >>> cib .dump()
63 == CIB START ===
64 0 . [ca pa ci t y |10000]−−[i n t e r f a c e | en0]−−[l o c a l _ i p | 1 0 . 2 . 2 . 2] − − (MTU|50.0 −9000.0)−−[remote_ip | 1 0 : 5 4 : 1 . 2 3] −− [

remote_port |80]−−[t r a n s p o r t | TCP].−−(u t i l i z a t i o n | 0 . 6 3)
65 1 . [ca pa ci t y |10000]−−[i n t e r f a c e | en0]−−[l o c a l _ i p | 1 0 . 2 . 1 . 1] − − (MTU|50.0 −9000.0)−−[remote_ip | 1 0 : 5 4 : 1 . 2 3] −− [

remote_port |80]−−[t r a n s p o r t | TCP].−−(u t i l i z a t i o n | 0 . 6 3)
66 2 . [ca pa ci t y |10000]−−[i n t e r f a c e | en0]−−[l o c a l _ i p | 1 0 . 2 . 2 . 2] − − (MTU|50.0 −9000.0)−−[remote_ip | 1 0 : 5 4 : 1 . 2 3] −− [

remote_port |80]−−[t r a n s p o r t | TCP].−−(u t i l i z a t i o n | 0 . 6 3)
67 3 . [ca pa ci t y |10000]−−[i n t e r f a c e | en0]−−[l o c a l _ i p | 1 0 . 2 . 1 . 1] − − (MTU|50.0 −9000.0)−−[remote_ip | 1 0 : 5 4 : 1 . 2 3] −− [

remote_port |80]−−[t r a n s p o r t | TCP].−−(u t i l i z a t i o n | 0 . 6 3)
68 4 . (ca pa ci t y | 1 0 0 0)−−[remote_ip | 1 0 : 5 4 : 1 . 2 3] −− [remote_port |80]−−[t r a n s p o r t | TCP].−−(u t i l i z a t i o n | 0 . 6 3)
69 5 . [ca pa ci t y |1000]−−[i n t e r f a c e | en7]−−[l o c a l _ i p |10.73.64.110] −− (MTU| 1 5 0 0)
70 6 . [ca pa ci t y |1000]−−[i n t e r f a c e | en1]−−[l o c a l _ i p | 1 0 . 3 . 1 . 1] − − (MTU| 1 5 0 0)
71 7 . [ca pa ci t y |100]−−[i n t e r f a c e | en0]−−(MTU| 1 5 0 0)
72 === CIB END ==
73 >>>
74

75 ###################################### EXITING INTERACTIVE DEBUG MODE ######################################

Listing 3: PM diagnostics output.

3 Test plan

This section describes a test plan targeting both the core library of the NEAT System and the complete

industrial use cases. It is important to follow a clear strategy for testing the core library during the

development cycle, since we aim to attract a community of NEAT users and developers. To achieve

this goal, it is vital to provide a fully functioning and reliable framework.

The second focus of the test plan is the use cases defined in WP1 [17] that demonstrate the NEAT

core library from WP2 [21], the extended transport system and protocol enhancements from WP3 [18,

19], and ported applications in a number of scenarios with differing requirements (see Deliverable

D4.1 [14]). The use cases build upon the tested core library, they require a higher level test plan to

generate measurement results and verify the expected benefits or performance improvements from

NEAT.

22 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

GIT
REPOSITORY

STATUS
PAGE

Figure 3: Buildbot system architecture overview (adapted from: http://docs.buildbot.net).

3.1 Core library testing

3.1.1 Test strategy

Automated testing is a core activity of any agile development methodology. It provides a quick feed-

back response to the developer teams about the health of the application. Automated tests need to be

executed continuously, should be fast and test results should be consistent and reliable. In order to

achieve these, most of the verifications happen as part of new features development. Quality should

be considered from the beginning by ensuring that what is being developed works and that it has not

broken any existing functionality.

NEAT aims to follow a fully automated software development processes. Automating the build and

test procedures allows NEAT contributors to obtain immediate feedback on the impact of their work to

the existing code base. Tests are run on multiple platforms, ensuring that code changes made on one

platform do not cause failures on other platforms. Furthermore, the approach can highlight uses of

platform-specific code which can be deterrent to the portability of the NEAT System. The automation

stack also handles the time-consuming process of generating packaged software releases for multiple

platforms, including signing builds and quality-assurance checks. Specifically, NEAT uses Buildbots

(introduced in Section 2.3.1) to run the required automation efficiently. FHM has taken on the role of

deploying, configuring and maintaining a Buildbot environment; this test activity has been going on

since early in the project lifetime, and the test infrastructure has been continually extended and im-

proved. As mutually agreed in plenary sessions on coding best practices, other partners contributing

to the core library (i.e., adding a new functionality or patching existing ones) perform unit testing on

their work before pushing it to the NEAT Github repository. For bug and test failures reporting we use

the issue tracking service embedded in Github.

3.1.2 Test environment

The test environment for the NEAT System is based around a Buildbot architecture (Figure 3). Our

Buildbot system consists of a single Buildbot Master (buildmaster) and several Buildbot Slaves (build-

slave). The buildmaster controls the Buildbot slaves and hosts the status website. It runs on a ded-

23 of 66 Project no. 644334

http://docs.buildbot.net

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

icated FreeBSD system within a virtual machine. The Buildbot status pages are publicly accessible

from the Internet, at: http://buildbot.nplab.de:28010.

Where possible, we run our buildslaves as virtual machines, this includes the FreeBSD, Linux and

NetBSD buildslaves on X86 platforms. All our virtual machines run within VirtualBox on a dedicated

FreeBSD rack-server hosted in the FHM laboratory. To achieve a good user experience for the con-

tributing NEAT developers, it was important to provide the Buildbot test results as fast as possible.

Therefore the virtual machines are hosted on a server with 16 cores, 64 gigabytes of memory and solid

state disks. This powerful hardware setup allows us to run the complete tests in less than four minutes

on all supported platforms, ensuring a fast feedback.

In addition to the virtual machines, we have dedicated buildslaves with MacOS X on an Apple

MacMini and FreeBSD ARM on a Raspberry PI 2. All buildslaves have public IPv4 and IPv6 addresses

to provide a good connectivity and ensure a maximum flexibility for the tests.

GitHub offers webhooks which are triggered by a variety of configurable events, this includes com-

mits, issues or pull-requests. When a developer pushes code to the NEAT repository, GitHub fires a

HTTP-POST request to our buildmaster with detailed information about the commit. This includes

the author, branch name, unique commit id and the review URL. The HTTP-POST request triggers the

Buildbot system test-suite.

3.1.3 Test procedures

Fetch and configure In the first step we test the reachability and consistency of our git repository

(https://github.com/NEAT-project/neat). Our buildslaves fetch a fresh copy of the repository and

start the CMake configuration procedure. The CMake configuration script checks if the platform is

supported, all required dependencies are fulfilled and checks for optional libraries. For example if the

platform doesn’t have native SCTP support, CMake searches for the userland SCTP library and builds

the project with it when available.

Compiling By default we compile the project with very strict compiler options to provide a high

code quality. All available compiler warnings are activated and if the compiler triggers a warning, the

compile process fails.

Test suite When the NEAT library has been successfully built, the buildslaves run a set of automated

tests using simple example programs included in the repository. Our first set of tests focus on NEAT

used by a client application which requests a HTML website from a web server. For this case we use

the client_http_get example and connect to a thttpd web server via a combination of SCTP/TCP

over IPv4/IPv6 connections. These tests cover the happy eyeballs and connection establishment func-

tionality. In a second step, we test the server functionality of NEAT by using the included echo server.

We establish connections from a client to the echo server via TCP, UDP and SCTP and check if the

established connections reflect all the data correctly. In a third step, we execute a set of predefined

PM unit tests which test the correctness of the PIB/CIB property logic, e.g., various property types,

priorities and comparison operations.

When the functionality of the NEAT core functionality has successfully been tested, we repeat the

same tests with the Valgrind framework [10] to detect memory leaks, uninitialized memory access and

use after free errors.

24 of 66 Project no. 644334

http://buildbot.nplab.de:28010
https://github.com/NEAT-project/neat

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

In addition to run-time tests, we use the Clang Static Analyzer [2] to find bugs in the source code.

If the static code analyzer finds an issue in the code, a HTML report is generated and automatically

uploaded to the buildmaster status page.

Developers also have the ability to commit custom test scripts to the master branch (or a testing

branch), enabling them to test specifics of their contributed functionalities. These tests may range

from simple status checks to measurement-based performance tests evaluating the compliance to

target metrics.

In addition to the aforementioned environment, we have started making use of the static code

analysis service offered by Coverity8. As a result NEAT developers can be informed about critical code

defects by accessing https://scan.coverity.com/projects/neat.

3.2 Consortium testbeds

The project partners are operating several testbeds used to evaluate the NEAT core library and in-

dustrial use cases defined in WP1. Each testbed offers a controlled experimentation platform where

solutions can be deployed and tested in an environment that resembles real-world conditions. For

the diverse set of tests to be delivered in WP4, experimental facilities have been identified for specific

evaluations, listed in Table 6.

Table 6: Relevant test environments and applications/tools for testing the industrial use cases.

Use case Test environment Most relevant applications and/or tools†

Mozilla Lab setup

Firefox

thttpd (§ 2.2.2)

nghttp2 (§ 2.2.7)

EMC INFINITE testbed
Rsync

PM diagnostics (§ 2.3.3)

Celerway MONROE testbed
Multi-homed download manager (§ 2.2.8)

PM diagnostics

Cisco UoA Internet testbed
NEAT-streamer

PM diagnostics

† NEAT-streamer and the NEAT ports of Firefox and Rsync are presented in detail in Deliverable D4.1 [14].

Table 6 provides a summary of the industrial use cases and the environments in which these will be

evaluated. Tests executed in these testbeds will be augmented with results generated by experiments

carried out on public Internet paths, where appropriate. In the following we detail the two largest

testbeds, MONROE and INFINITE.

3.2.1 MONROE

The H2020 MONROE project (Measuring Mobile Broadband Networks in Europe) builds and main-

tains a testbed of several hundred multi-network nodes — up to five WANs, including three mobile

broadband networks — that can be used to test new protocols and algorithms in realistic scenarios.

8http://www.coverity.com

25 of 66 Project no. 644334

https://scan.coverity.com/projects/neat
http://www.coverity.com

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

MEASURING MOBILE BROADBAND NETWORKS IN EUROPE

Temporary
Repository

Open
Data

MONROE
Visualization

M
O

N
R

O
E

Se
rv

e
rs

MONROE
DB

DB
Maintenance
& Operations

N
o

d
e

User’s
Storage

Inventory

Measurement
Responders

User Access and Scheduling Management and Maintenance

CONTAINERS
Continuous Experiments

CONTAINERS
User Experiments

Core
Components

mPlane

MPLANE
Repository

mPlane
Visualization

Figure 4: Design of the MONROE system.

The nodes are placed on buses, trains, trucks, and in offices and private homes. This testbed will help

evaluating Celerway’s industrial use case and work performed by SRL and KaU in WP3 on multipath

scheduling. In addition, Celerway is building the NEAT library and some example (template) appli-

cations as MONROE containers in order to ease testing of NEAT for external users. Moreover, UoA

has ported PATHspider and edgetrace to both run on MONROE, and these are now deployed exper-

iments [24]. The following will describe the highlights of the MONROE architecture and node capa-

bilities; for a full detailed overview, please visit https://www.monroe-project.eu. We also describe in

detail how to build and deploy NEAT applications to be tested in MONROE in Appendix C.

MONROE overview The MONROE platform is composed of the following elements, which are also

summarised in Figure 4:

• MONROE hardware nodes.

• Core software running in the nodes, including the management and scheduling systems.

• Base experiments running in the nodes.

• Synchronization modules that send data to the servers.

• Server-side software to collect data from the internal experiments and store them in databases.

• Server-side scheduling of experiments.

• Server-side scripts for data backup and database dump.

• Server-side software for node management and maintenance.

• Server-side experiment scheduling components.

• Web user interface.

It is the leftmost (green) components in Figure 4 that are relevant for NEAT’s use of MONROE. Both

default MONROE experiments and user experiments are executed inside Docker containers9, which

9https://www.docker.com/what-container

26 of 66 Project no. 644334

https://www.monroe-project.eu
https://www.docker.com/what-container

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

Figure 5: A MONROE node with all the main hardware components installed.

provide resource isolation from the host node. Docker containers are based on a layered file system,

where a container can reuse layers shared with other containers. MONROE provides a default base

image for the experiment containers. This base image provides a base operating system installation

with default tools that are potentially useful for many experiments. When users base their own con-

tainers on the base image, they get automatic access to its underlying contents. This is a relevant

consideration because it allows lightweight containers to provide just the contents that are unique for

the particular experiment, significantly reducing the download and deployment time and traffic vol-

ume. As the base image resides permanently in the nodes, nodes need to transfer only the new layers

created by the users for their experiments, saving data quota usage on the testbed’s SIM subscriptions

and hence, leaving more quota to run experiments.

Experiments running inside a container have access to the experimental network interfaces. They

can read and write on their own file system, overlaid over that of the base MONROE image. They can

use any software tool installed in the base image, or they can install their own tools and libraries in the

overlaid file system.

MONROE nodes They consist of two APU2C4 with two SIM card slots each. We denote the two APUs

head and tail, the former having two Sierra Wireless MC7455 CAT6 modems and the latter having one

MC7455 CAT 6 modem and one dual band Compex WLE600VX WiFi mini PCIe card. The head and tail

are connected with two Ethernet cables in order to support experimental scenarios over four networks

from the head APU. Table 7 describes the core components of the node, which are shown in Figure 5

(numbers in the figure refer to block numbers in the table).

Appendix C describes in detail how to build an experiment with NEAT in MONROE.

27 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

Ta
b

le
7:

H
ar

d
w

ar
e

in
a

M
O

N
R

O
E

n
o

d
e.

B
lo

ck
n

o.
C

o
m

p
o

n
en

t
D

es
cr

ip
ti

o
n

1
A

P
U

2C
4

sy
st

em
b

o
ar

d
4G

B
m

o
u

n
te

d
in

re
d

m
et

al
en

cl
o

su
re

w
it

h
3

L
A

N
,U

SB
3.

0
an

d
6

cu
st

o
m

is
ed

an
te

n
n

a
h

o
le

s1

•
C

P
U

:A
M

D
E

m
b

ed
d

ed
G

se
ri

es
G

X
-4

12
T

C
,1

G
H

z
q

u
ad

Ja
gu

ar
co

re
w

it
h

64
b

it
an

d
A

E
S-

N
I

su
p

-
p

o
rt

,3
2K

d
at

a
+

32
K

in
st

ru
ct

io
n

ca
ch

e
p

er
co

re
,s

h
ar

ed
2M

B
L2

ca
ch

e.

•
D

R
A

M
:4

G
B

D
D

R
3-

13
33

D
R

A
M

.

•
3

G
ig

ab
it

E
th

er
n

et
p

o
rt

s;
2

U
SB

3.
0

p
o

rt
s.

•
2

in
te

rn
al

m
in

iP
C

I
ex

p
re

ss
sl

o
ts

,w
it

h
SI

M
sl

o
ts

.

•
Po

w
er

:1
2V

D
C

,a
b

o
u

t6
to

12
W

d
ep

en
d

in
g

o
n

C
P

U
lo

ad
.

•
B

o
ar

d
si

ze
:1

52
.4

x
15

2.
4m

m
.

•
T

h
e

b
o

ar
d

al
so

h
as

an
SD

ca
rd

re
ad

er
,w

h
ic

h
is

cu
rr

en
tl

y
n

o
tu

se
d

b
y

M
O

N
R

O
E

.

2
C

o
m

p
ex

W
LE

60
0V

X
80

2.
11

ac
/b

/g
/n

D
u

al
-

B
an

d
m

P
C

Ie
m

o
d

u
le

2
D

u
al

b
an

d
A

C
m

in
iP

C
I

ex
p

re
ss

ca
rd

th
at

ca
n

b
e

u
se

d
in

b
o

th
ac

ce
ss

p
o

in
ta

n
d

cl
ie

n
tm

o
d

e.

3
Si

er
ra

W
ir

el
es

s
M

C
74

55
LT

E
m

P
C

Ie
m

o
d

u
le

3
m

in
iP

C
I

ex
p

re
ss

ca
rd

w
e

u
se

fo
r

M
B

B
co

n
n

ec
ti

o
n

.

4
m

sa
ta

16
g

16
G

B
m

SA
TA

SS
D

m
o

d
u

le
4

U
se

d
to

st
o

re
O

S,
M

O
N

R
O

E
SW

,
ex

p
er

im
en

ts
,

lo
gs

,
an

d
re

su
lt

s.
C

an
b

e
ex

te
n

d
ed

to
fo

r
in

st
an

ce
64

G
B

if
n

ec
es

sa
ry

.

5
E

xt
er

n
al

T-
b

la
d

e
LT

E
A

n
te

n
n

a5
W

e
w

il
lu

se
2

LT
E

an
te

n
n

as
th

at
ca

n
b

e
m

o
u

n
te

d
o

n
th

e
re

d
en

cl
o

su
re

w
al

l.

6
W

iF
ir

u
b

b
er

sw
iv

el
an

te
n

n
a

2.
4/

5.
0G

H
z6

W
e

at
ta

ch
to

th
e

n
o

d
e

3
W

iF
id

u
al

b
an

d
an

te
n

n
as

.

7
A

ct
iv

e/
Pa

ss
iv

e
G

P
S

an
te

n
n

a7
W

e
w

il
lu

se
ac

ti
ve

an
d

p
as

si
ve

an
te

n
n

as
(d

ep
en

d
en

to
fc

ov
er

ag
e

in
b

u
se

s)
.

E
th

er
n

et
ca

b
le

s
U

se
d

to
co

n
n

ec
tt

h
e

A
P

U
s

.

1
h

tt
p

:/
/w

w
w

.p
ce

n
gi

n
es

.c
h

/a
p

u
2c

4.
h

tm
2

h
tt

p
:/

/w
w

w
.p

ce
n

gi
n

es
.c

h
/w

le
60

0v
x.

h
tm

3
h

tt
p

:/
/t

ec
h

sh
ip

.c
o

m
/p

ro
d

u
ct

s/
si

er
ra

-w
ir

el
es

s-
m

c7
45

5-
lt

e-
ca

t6
/

4
h

tt
p

:/
/w

w
w

.p
ce

n
gi

n
es

.c
h

/m
sa

ta
16

g.
h

tm
5

h
tt

p
s:

//
te

ch
sh

ip
.s

e/
p

ro
d

u
ct

s/
ex

te
rn

al
-t

-b
la

d
e-

lt
e-

an
te

n
n

a/
6

h
tt

p
s:

//
te

ch
sh

ip
.s

e/
p

ro
d

u
ct

s/
w

ifi
-r

u
b

b
er

-s
w

iv
el

-a
n

te
n

n
a-

24
gh

z-
50

gh
z/

7
h

tt
p

s:
//

te
ch

sh
ip

.s
e/

p
ro

d
u

ct
s/

ex
te

rn
al

-g
p

s-
an

te
n

n
a/

28 of 66 Project no. 644334

http://www.pcengines.ch/apu2c4.htm
http://www.pcengines.ch/wle600vx.htm
http://techship.com/products/sierra-wireless-mc7455-lte-cat6/
http://www.pcengines.ch/msata16g.htm
https://techship.se/products/external-t-blade-lte-antenna/
https://techship.se/products/wifi-rubber-swivel-antenna-24ghz-50ghz/
https://techship.se/products/external-gps-antenna/

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

3.2.2 INFINITE

The INFINITE testbed10, operated by EMC, provides a cloud infrastructure spanning three geograph-

ically dispersed datacenters in Cork, Ireland, interconnected via a dark fibre ring and combined with

the Vodafone mobile M2M (machine-to-machine) network covering the island of Ireland.

Figure 6: INFINITE Testbed topology.

INFINITE is comprised of a testbed environment with a large scale-out capability and enterprise

technologies encompassing Cloud, Analytics, Security and Mobile M2M domains. The value provided

by the testbed is derived from industrial use-cases that explore and clearly demonstrate the potential

of innovative new solutions or products.

The goal of INFINITE is to make available a state-of-the-art secure virtual cloud and network in-

frastructure providing highly scalable bandwidth and capacity with analytics capabilities, spanning

multiple domains (wireless, wireline, virtualized, physical) at scale.

The sites of the three INFINITE datacenters, depicted in Figure 6, are:

1. Dell EMC datacenter: it hosts Vblock converged infrastructure systems and GreenPlum analyt-

ics platforms.

2. Vodafone datacenter: it hosts compute, storage and networking resources.

3. CIX datacenter: it hosts compute, storage and networking resources. This datacenter serves as

an independent location that offers wired Internet access to the testbed.

The logical architecture of the INFINITE Testbed is depicted in Figure 7. The testbed utilizes VMware

technologies, such as vSphere, NSX, to provide isolated network slices distributed across the three dat-

acenter locations for each experiment.
10http://www.iotinfinite.org

29 of 66 Project no. 644334

http://www. iotinfinite. org

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

This testbed will be used for testing EMC’s industrial use case as outlined in Section 3.3.4. This use

case includes:

• An integration of NEAT with an SDN controller [13], developed by EMC and KaU, for intra-

datacenter optimization. The SDN integration work was introduced in Deliverable D3.1 [18].

• A WAN testing of deadline-aware less than best-effort mechanisms [20] (DA-LBE), developed by

SRL, in conjunction with NEAT for a cloud-based data transfer service. DA-LBE is described in

detail in Deliverable D3.2 [19].

Figure 7: INFINITE Testbed logical architecture.

3.3 Use case testing

In the following we describe the use cases selected for testing and outline the testbeds in which these

will be evaluated. Use case testing will allow not only to exercise basic functionalities of the NEAT core

system, but also to demonstrate some of the benefits (described in Table 8) that WP3 mechanisms will

bring to the selected use cases and applications.

Table 9, adapted from Deliverable D4.1 [14], shows the applications ported to NEAT that will be

used for use-case testing. Similarly to the tools in Table 1, the Application Class as defined in the NEAT

architecture is indicated; Class-3 apps make use of a NEAT Application Support module layered on

top of the NEAT library, in this case a sockets shim developed in Task 3.3. Use case testing will be

supported by a subset of the tools presented in Section 2.2. Specifically, thttpd and nghttp2 may be

used in Mozilla’s use case. Logging and Policy Manager Diagnostics will be utilised in all use cases.

30 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

Table 8: Expected benefits to industry use cases from transport protocol enhancements and extended
transport system mechanisms, developed in WP3.

Use Case WP3 Mechanism NEAT Contribution

Mozilla SCTP optimisations Improved performance of SCTP and to make it a
viable alternative to TCP; some optimisations
needed to support flow priority

EMC Deadline-aware LBE congestion
control

Extended support for background traffic,
including the traffic generated by data-backup
and replication applications

Celerway,
Mozilla

Multi-path scheduling Support for latency-sensitive traffic, and efficient
utilisation of available network resources

Mozilla Coupled congestion control for
single-path TCP

Improved performance of TCP, extended support
for flow priority, and efficient use of available
network resources

Mozilla New transports for web browsing Helps guide transport protocol selection and
parametrization

Cisco, EMC Extended policy system and
transport selection

Enables rule based selection of transport
protocols, interfaces and paths

Celerway, EMC External controller integration Support for externally generated policies and
characteristics

Table 9: Applications ported to NEAT. NEAT integration indicates the migration path followed to port
each application.

Application
Test use

case
NEAT integration Key NEAT features used App class

Firefox Mozilla
Hybrid solution using NEAT event loop
in conjunction with Firefox event loop

Transport selection,
policy

1

Rsync EMC Socket compatibility API Policy, multipath 3

NEAT-
streamer

Cisco
Full use of NEAT event loop and NEAT
User API with Gstreamer

QoS, datagram service,
policy

1

3.3.1 Mozilla use case

The Mozilla Firefox web browser is a sophisticated legacy application and runs on almost every con-

ceivable hardware platform. It implements many mechanisms offered by the NEAT library. Happy-

eyeballing between IPv4 and IPv6 and between different application layer protocols are just some of

them. Firefox using the NEAT library is a good feedback platform for the NEAT System as a whole, and

serves also as an evaluation of the NEAT library and the NEAT API and their ability to support involved

and complex applications such as Firefox.

The main expected result is to prove that an application such as Firefox can make use of NEAT’s

Happy-Eyeballing and use different available transport protocols. At the same time, the application

performance, measured by page load times, should not be degraded — Firefox is already a well-tuned

application and an improved performance is not expected from NEAT per se (though, of course, use

of e.g. a multipath transport may boost throughput).

31 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

Table 10: Components of Mozilla’s use case testing environment.

Component Description

Application In this case the application will be a Firefox distribution that uses the NEAT
library (see Deliverable D4.1 [14]).

Server The web server must be able to serve content using IPv4 and IPv6 and us-
ing different transport layer protocols, e.g., TCP, MPTCP, etc. It must be
possible to configure the server to offer multiple IP and transport layer
protocols as well as just a single one. The server host must have have
two network interfaces to demonstrate capabilities of MPTCP. This will
test the NEAT library’s happy-eyeballs mechanism and additional compo-
nents, such as the PM.

Network It should be possible to control the test network and block certain pro-
tocols. For example, both a client and a server that support IPv6 and
IPv4 protocols but the path is misconfigured and only allows IPv4 pack-
ets through.

Test topology

The base topology used for experiments is shown in Figure 8. The three key components of this setup

are described in Table 10.

Client
running NEAT-
enabled Firefox

http serverNetwork

1 or 2 network
interfaces

Figure 8: Base test topology for the Mozilla use case.

Planned tests

The experiments will demonstrate how Firefox uses the NEAT System for IP and transport protocol

selection. Firefox will use NEAT to select the best protocol for the given network and capabilities of

both the client and the server. This test will show that an Internet application can rely on the NEAT

System to select the best available protocol.

Firefox is using NEAT with preference to pick IPv6 over IPv4 and request the use of MPTCP if it is

available. The testing will include the scenarios listed in Table 11. In all these scenarios, the client

supports both IPv4 and IPv6. Tests 1 focus on IP protocol selection, whereas Tests 2 focus on the use

of multipath transport.

Expected Results

In each test Firefox should use the best available option according to the given application preference.

The impact of NEAT’s Happy-Eyeballs component should not influence the performance of Firefox.

32 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

Table 11: Experiments for Mozilla’s use case testing.

Test ID Summary

1a The server supports both IPv4 and IPv6, but the network blocks IPv6

1b The network supports both IPv4 and IPv6, but the server supports only IPv4

1c Both the server and the network support IPv4 and IPv6

2a The server has one network interface; both client, network and server support IPv4 and
IPv6

2b The server has two network interfaces; both client, network and server support IPv4 and
IPv6

Table 12: Components of Cisco’s use case testing environment.

Component Description

Application It must be able to establish an interactive session between two hosts us-
ing traffic with suitable QoS marking. The NEAT-streamer application (see
Deliverable D4.1 [14]) has been written to evaluate this use case. The ap-
plication should be able to take advantage of information signalled to the
host about network configuration.

Network The network environment must be able to simulate several profiles of net-
work configurations that have different network properties signalled. Both
lab and live network environments are suitable places to evaluate the use
of QoS traffic with NEAT. The UoA Internet testbed will be used to evaluate
lab environments for this use case.

The performance will be measured by page load times. Finally, use of the MPTCP protocol should

show performance improvements compared to the standard TCP protocol.

3.3.2 Cisco use case

Cisco has an established line of business in providing remote video and audio conferencing software.

Software implementing this use case must be able to offer services to the application that meet the

requirements for low latency traffic, quality of service marking for that traffic and the ability to au-

tomatically discover properties about the local network environment via measurement and network

signalling.

The testing environment for this use case includes two main components, listed in Table 12.

The goal of this use case is to improve application access to discoverable network properties (pro-

tocol support, cost, MTU) and to facilitate the deployment of low latency traffic. The NEAT System,

informed by network properties discovered through PvD (Provisioning Domains) should be able to

generate the traffic required to support a two-way, live video connection or signal that this is not pos-

sible on the current network.

The NEAT stack will be run in the UoA Internet testbed configured to simulate a set of different

network environments simultaneously available, with configuration advertised over PvD:

1. Network without PvD.

33 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

N
EA

T-
st

re
am

er
 A

PP

WiFi IF

Cellular IF

WiFi IF

NEAT
API

NEAT
Stack

U
DP

 T
ra

ns
po

rt

IP

CIB

Po
lic

y
M

an
ag

er

Mobile
CIB SRC

Private WiFi
 CIB SRC

Provider
Network

Provider
Network

Private WiFi
AP

Public WiFi
AP

INTERNET

Public WiFi
 CIB SRC

Cellular PvD Signalling

WiFi PvD Signalling

Figure 9: Wireless LAN topology for the Cisco use case.

Table 13: Experiments for Cisco’s use case testing.

Test ID Summary

1a With a single, non signalling enabled network

2a With dual networks signalling, non signalling

2b Dual networks, signalling high capacity, signalling low capacity

2c Dual networks, signalling high capacity + high cost, signalling low capacity + low cost;
profile preferring cost

2d Dual networks, signalling high capacity + high cost, signalling low capacity + low cost;
profile preferring throughput

2e Dual networks, signalling low latency + high cost, signalling low capacity + low cost; pro-
file preferring low latency

2. Network Corporate PvD Policy.

3. Network Open Network PvD Policy.

The application will be expected to set up a bidirectional video feed in each case, exhibiting fallback

between values if required. The NEAT stack will capture and use additional information from the

network when it is available, i.e., PvD based signalling.

Test Topology

The test topology (Figure 9) will emulate a roaming NEAT-enabled client that can use access networks

with different configurations advertised on different interfaces. Multiple networks may be available to

the roaming host a single time, in this case the NEAT System will use signalled information to make a

network selection choice.

Planned Tests

In all cases the same NEAT-streamer test will be run, NEAT-streamer will attempt to establish an inter-

active video workload connection to a remote peer, reporting obtained throughput and latency. This

test will be run in several network configurations, shown in Table 13.

34 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

Expected Results

In each of the planned tests above, the NEAT stack is expected to produce a selection in line with the

specified policy, availability of information from the network or to fall through to a default case.

3.3.3 Celerway use case

The Celerway use case includes NEAT components on multi-homed devices like smartphones and

routers. Based on information about application needs and collection of network statistics, this use

case involves optimal selection of interfaces and transport options. Application needs can be learned

through the NEAT User API on client devices, or by inferring application types and needs on a router

or proxy. In order to test the Celerway use case, we are developing a set of CIBs and PIBs focusing

particularly on mobile broadband, developing an application using NEAT, and implementing NEAT in

the H2020 MONROE platform as described in Section 3.2.1.

Celerway CIBs and PIBs: We are developing CIB sources and policies that collect and use informa-

tion about network performance and metadata to make optimal interface and transport selections.

An example CIB will be populated with mobile broadband metadata. Table 3 gives an overview of the

properties that are supported.

NEAT in MONROE: Celerway will test and experiment with its use case by using the MONROE plat-

form. A MONROE node runs the same software as a Celerway router, and it can connect to three

mobile broadband networks, WiFi and Ethernet simultaneously. A MONROE node can act either as a

client supporting NEAT-enabled applications, or as a proxy supporting non-NEAT applications. Im-

plementation of Celerway’s use case includes the following elements:

• Deployment of the NEAT System on MONROE nodes. This will also make NEAT available to

MONROE users so that they can plan and build experiments based on the NEAT architecture.

• Extension to MONROE’s metadata exporting mechanism to export metadata to the NEAT PM

(CIB). The Metadata exporter is one of the key components of the MONROE architecture. It col-

lects information about available mobile networks and their properties and makes it available to

other components. The Metadata exporter is designed to be easily extended in order to support

new formats and new data recipients. In order to satisfy NEAT requirements, Celerway has built

an extension that exports the data to a CIB via a Unix domain socket to the PM. The NEAT PM is

notified immediately upon every detected change in network properties.

• Design and implementation of experiments to be run on a set of MONROE nodes. An experi-

ment in MONROE terminology is an application that runs in an isolated environment (Docker

container) and has access to selected network interfaces and related metadata. NEAT applica-

tions and non-NEAT applications can be scheduled on a selected set of MONROE nodes for an

agreed period of time. Collected results are then available to the experimenter for analysis.

Next, we present the test setup and topology, planned tests and experiments and expected results

and outcome of the tests.

35 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

Figure 10: Test topology for the Celerway use case.

Table 14: Components of Celerway’s use case testing environment.

Component Description

MONROE node as client Described in detail in § 3.2.1.

Non-NEAT application An application that is not using NEAT. A non-NEAT enabled Download
manager will be the first example.

NEAT application An application that is using NEAT. A NEAT-enabled Download manager
will be the first example.

NEAT proxy A proxy that fetches the non-NEAT traffic, infers needs and gives NEAT be-
haviour.

LTE 1 A cat6 Sierra Wireless MC7455 modem connected to operator 1 (different
in different countries).

LTE 2 A cat6 Sierra Wireless MC7455 modem connected to operator 2 (different
in different countries).

Non-NEAT server An Intel NUC placed in Celerway’s office with an HTTP server and 100
Mbit/s fiber link.

Test Topology

Figure 10 depicts the topology which serves as the basis of the experiments. The test setup will be

comprised of the key components listed in Table 14.

Planned Tests

Table 15 summarizes the planned experiments that will be carried out as part of this use case. Specifi-

cally these tests will be as follows:

• Test 1 will use the Download manager described in § 2.2.8 running on a MONROE node using the

topology described above. In this case, the Download manager will be a NEAT application (i.e.,

a Class-1 application). It will use CIBs containing metadata about LTE networks and bandwidth

measurements to make optimal interface selection. The main metric will be throughput.

36 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

Table 15: Experiments for Celerway’s use case testing.

Test ID Summary

1 Evaluate the impact of NEAT CIBs and PIBs on NEAT applications in multi-homed mobile
scenarios

2 Evaluate the impact of NEAT CIBs and PIBs on non-NEAT applications using a NEAT
proxy in multi-homed mobile scenarios

• Test 2 will use the Download manager described in § 2.2.8 running on a MONROE node us-

ing the topology described above. However, in this case, the Download manager will not be

NEAT-enabled (i.e., a Class-0 application). Hence, it will go through the proxy that must infer

the application needs. It will use CIBs containing metadata about LTE networks and bandwidth

measurements to make optimal interface selection based on inferred application needs. The

main metric will be throughput.

Expected Results

Through Test 1, we will demonstrate that NEAT can increase throughput and application quality by

using the policy system with generated CIBs.

Through Test 2, we will demonstrate that NEAT can increase throughput and application quality

also for non-NEAT applications by inferring the application needs.

3.3.4 EMC use case

The EMC use case aims to make a datacentre network aware of application requirements and network

conditions. The use case expects to leverage the transport optimisations provided by the NEAT System

interacting with a SDN controller/orchestrator which manages the datacenter network.

The primary goal of this use case is to improve the performance for large data transfers (also called

elephant flows) within a datacentre, using the NEAT System augmented by the knowledge of the un-

derlying network with a minimal impact on the applications running over it. Thus the optimisation

of the whole network’s performance will be considered in the evaluation. In addition the use case will

test DA-LBE congestion control mechanisms incorporated into NEAT as part of WP3. This data repli-

cation scenario is comprised of a client connected to a datacentre over a wide area network. The test

will aim to demonstrate the file transfers targeting a predefined completion time without adversely

impacting concurrent network traffic.

Test Topology

Figures 11 and 12 depict the two topologies which serve as the basis of the experiments. The setup

components are described in Table 16. The topology depicted in Figure 11 will be used to evaluate an

SDN datacenter scenario. The topology depicted in Figure 12 will be used to evaluate a WAN cloud

provider scenario using DA-LBE.

37 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

Application
requirements

Po
lic

ie
s

&
N

e
tw

o
rk

 i
n
fo

rm
a
ti

o
n

NEAT-enabled
client

SDN Controller
(OpenDaylight)

NEAT NBI

NEAT-enabled
serverMultipath datacenter network

cross traffic

NEAT client traffic

Figure 11: Datacenter topology for the EMC use case (SDN experiments).

NEAT-enabled
client

NEAT-enabled
serverE

M
C

 I
N

FI
N

IT
E
 t

e
st

b
e
d

S
im

u
la

 l
a
b

Internet

Wide area path

cross traffic

DA-LBE traffic

Figure 12: WAN topology for the EMC use case (DA-LBE experiments).

Planned Tests

Several scenarios will be tested to demonstrate that an integration between NEAT and a SDN con-

trolled network leads to improvements for both the application and the network, on the one hand,

and the benefits brought by the use of DA-LBE, on the other hand. Table 17 summarizes the planned

experiments that will be carried out as part of this use case.

Congestion will be induced by replaying realistic cross-traffic generated using existing traffic traces

and generator tools [3, 26].

Expected Results

The expected results for the above sequence of tests are:

• Faster transfer times due to the transport protocol optimizations provided by NEAT (Tests 1a and

1b).

• Improved isolation between elephant flows and on cross-traffic flows, resulting in less degrada-

tion in transfer speed and throughput in a congested network (Tests 2 and 3).

• Better network utilisation due to the seamless ability to exploit multiple physical paths in an

intelligent way orchestrated through the SDN-NEAT integration (Test 3).

38 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

Table 16: Components of EMC’s use case testing environment.

Component Description

NEAT-enabled applica-
tion

A client/server data synchronization application for transmitting large
files across the network. A NEAT-enabled port of Rsync (neat-rsync)
has been selected as a representative open-source application. Denoted
NEAT-enabled client/server in Figures 11 and 12.

Traffic generator The traffic generators D-ITG and DCT2Gen will be used to generate cross
traffic with the desired characteristics.

Multipath datacenter
network

SDN-enabled physical or virtualized topology within the EMC INFINITE
testbed, comprised of three disjoint paths between a source and destina-
tion node, hosting the client and server of the application, respectively.
The network is managed by a network controller supporting OpenFlow as
the southbound protocol. The experimental network will be used to simu-
late different conditions in a managed network, e.g., high/low congestion,
high/low latency, heavy/light load.

Wide area path An Internet path traversing the public Internet from the INFINITE testbed
to a node hosted at SRL.

SDN Controller The OpenDaylight open-source SDN controller framework will be used to
manage the datacenter network, monitor its status and interact with the
attached NEAT Systems on the hosts (relying on the work developed in
WP3).

Table 17: Experiments for EMC’s use case testing.

Test ID Summary

1a Large file transfer with legacy Rsync in both an empty and a congested network, in order
to determine baseline performance

1b Large file transfer from client to server in both an empty and a congested network with
neat-rsync

2 Large file transfer between a neat-rsync client and server in a datacenter network with
SDN-supported orchestration, and empty and congested links

3 Transparent handling of elephant flows using controller-assigned DSCP marking or
MPTCP subflows mapped to disjoint network paths using neat-rsync

4a Large file transfer between neat-rsync client and server over WAN path using TCP

4b Large file transfer between neat-rsync client and server over WAN path using DA-LBE
transport

4c Large file transfer between neat-rsync client and server over WAN path with parallel
DA-LBE and TCP transport

• Tests 4a, 4b and 4c will demonstrate that reference TCP flows, injected in parallel to the DA-LBE

flow, will not be impacted significantly by DA-LBE file transfers.

39 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

4 Conclusions

In this deliverable we presented the final set of tools developed within the NEAT project in order to test

performance and functionality of various components of the NEAT stack. In addition, we provided

an overview of the testing environments which are used to test and evaluate the NEAT System and

provided a test plan for evaluating the project’s industrial use cases. The described experiments will

demonstrate the benefits of the NEAT transport system. The experiments are carried out in Task 4.3

and their outcomes will be reported in Deliverable D4.3. Finally, the experiences and lessons learnt

from these activities will provide additional feedback driving final code and API adjustments.

References

[1] Buildbot — The Continuous Integration Framework. [Online]. Available: https://www.buildbot.

net/

[2] Clang Static Analyzer. [Online]. Available: https://clang-analyzer.llvm.org/

[3] D-ITG (Distributed Internet Traffic Generator). [Online]. Available: http://traffic.comics.unina.

it/software/ITG/

[4] NEAT’s Pipelined HTTP GET utility. [Online]. Available: https://github.com/NEAT-project/

HTTPOverSCTP

[5] nghttp2 — HTTP/2 C Library. [Online]. Available: https://www.nghttp2.org/

[6] Pipelined HTTP GET utility. [Online]. Available: http://www.daemonology.net/phttpget/

[7] Scapy. [Online]. Available: http://www.secdev.org/projects/scapy/

[8] tcpexposure — The middlebox measurement tool. [Online]. Available: https://github.com/

micchie/tcpexposure/

[9] thttpd — Tiny/turbo/throttling HTTP server. [Online]. Available: http://acme.com/software/

thttpd/

[10] Valgrind. [Online]. Available: http://valgrind.org/

[11] R. Barik, M. Welzl, and A. Elmokashfi, “How to say that you’re special: Can we use bits in the IPv4

header?” in Proceedings of the Applied Networking Research Workshop (ANRW), Berlin, Jul. 2016.

[Online]. Available: https://irtf.org/anrw/2016/anrw16-final17.pdf

[12] R. Barik, M. Welzl, A. Elmokashfi, S. Gjessing, and S. Islam, “fling: A flexible ping for middlebox

measurements,” in 29th International Teletraffic Congress (ITC 29), Genoa, Italy, Sep. 2017.

[13] Z. Bozakov, S. Mangiante, C. Benet, A. Brunstrom, R. Santos, A. Kassler, and D. Buckley, “A NEAT

framework for enhanced end-host integration in SDN environments,” in IEEE Conference on Net-

work Function Virtualization and Software Defined Networks (IEEE NFV-SDN), Berlin, Nov. 2017,

accepted for publication, to appear.

40 of 66 Project no. 644334

https://www.buildbot.net/
https://www.buildbot.net/
https://clang-analyzer.llvm.org/
http://traffic.comics.unina.it/software/ITG/
http://traffic.comics.unina.it/software/ITG/
https://github.com/NEAT-project/HTTPOverSCTP
https://github.com/NEAT-project/HTTPOverSCTP
https://www.nghttp2.org/
http://www.daemonology.net/phttpget/
http://www.secdev.org/projects/scapy/
https://github.com/micchie/tcpexposure/
https://github.com/micchie/tcpexposure/
http://acme.com/software/thttpd/
http://acme.com/software/thttpd/
http://valgrind.org/
https://irtf.org/anrw/2016/anrw16-final17.pdf

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

[14] Z. Bozakov, S. Mangiante, A. Brunstrom, D. Damjanovic, G. Fairhurst, A. Hansen, T. Jones,

N. Khademi, A. Petlund, , D. Ros, D. Stenberg, M. Tüxen, and F. Weinrank, “NEAT-based applica-

tions and first version of NEAT-based tools,” The NEAT Project (H2020-ICT-05-2014), Deliverable

D4.1, Mar. 2017.

[15] B. Briscoe, M. Kuehlewind, and R. Scheffenegger, “More Accurate ECN Feedback in TCP,”

Internet Engineering Task Force, Internet-Draft draft-ietf-tcpm-accurate-ecn, Oct. 2016, Work in

Progress. [Online]. Available: https://tools.ietf.org/html/draft-ietf-tcpm-accurate-ecn

[16] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Donnet, “Revealing Middlebox

Interference with Tracebox,” in Proceedings of the 2013 Conference on Internet Measurement

Conference (IMC), Barcelona, Spain, 2013, pp. 1–8. [Online]. Available: http://doi.acm.org/10.

1145/2504730.2504757

[17] G. Fairhurst, T. Jones, Z. Bozakov, A. Brunstrom, D. Damjanovic, T. Eckert, K. R. Evensen, K.-J.

Grinnemo, A. F. Hansen, N. Khademi, S. Mangiante, P. McManus, G. Papastergiou, D. Ros,

M. Tüxen, E. Vyncke, and M. Welzl, “NEAT Architecture,” NEAT Project (H2020-ICT-05-2014),

Deliverable D1.1, Dec. 2015. [Online]. Available: https://www.neat-project.org/publications/

[18] K.-J. Grinnemo, Z. Bozakov, A. Brunstrom, M. I. Bueno, D. Damjanovic, K. Evensen, G. Fairhurst,

A. Hansen, D. Hayes, P. Hurtig, N. Khademi, S. Mangiante, M. Althaff, M. Rajiullah, D. Ros, I. Rün-

geler, R. Santos, R. Secchi, T. C. Tangenes, M. Tüxen, F. Weinrank, and M. Welzl, “Initial Report

on the Extended Transport System,” NEAT Project (H2020-ICT-05-2014), Deliverable D3.1, Dec.

2016.

[19] K.-J. Grinnemo, Z. Bozakov, A. Brunstrom, D. Damjanovic, K. Evensen, G. Fairhurst, A. Hansen,

D. Hayes, P. Hurtig, N. Khademi, S. Mangiante, D. Ros, I. Rüngeler, M. Tüxen, F. Weinrank, and

M. Welzl, “Final Report on Transport Protocol Enhancements,” NEAT Project (H2020-ICT-05-

2014), Deliverable D3.2, Feb. 2017.

[20] D. Hayes, D. Ros, A. Petlund, and I. Ahmed, “A framework for less than best effort congestion

control with soft deadlines,” in Proceedings of IFIP Networking, Stockholm, Jun. 2017. [Online].

Available: http://dl.ifip.org/db/conf/networking/networking2017/1570334752.pdf

[21] N. Khademi, Z. Bozakov, A. Brunstrom, O. Dale, D. Damjanovic, K. R. Evensen, G. Fairhurst,

A. Fischer, K.-J. Grinnemo, T. Jones, S. Mangiante, A. Petlund, D. Ros, I. Rüngeler,

D. Stenberg, M. Tüxen, F. Weinrank, and M. Welzl, “Final Version of Core Transport

System,” NEAT Project (H2020-ICT-05-2014), Deliverable D2.3, Aug. 2017. [Online]. Available:

https://www.neat-project.org/publications/

[22] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Netalyzr: Illuminating the Edge Network,” in

Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement (IMC), Melbourne,

2010, pp. 246–259. [Online]. Available: http://doi.acm.org/10.1145/1879141.1879173

[23] I. R. Learmonth, B. Trammell, M. Kuhlewind, and G. Fairhurst, “PATHspider: A tool for

active measurement of path transparency,” in Proceedings of the Applied Networking Research

Workshop (ANRW), Berlin, 2016, pp. 62–64. [Online]. Available: https://irtf.org/anrw/2016/

anrw16-final13.pdf

41 of 66 Project no. 644334

https://tools.ietf.org/html/draft-ietf-tcpm-accurate-ecn
http://doi.acm.org/10.1145/2504730.2504757
http://doi.acm.org/10.1145/2504730.2504757
https://www.neat-project.org/publications/
http://dl.ifip.org/db/conf/networking/networking2017/1570334752.pdf
https://www.neat-project.org/publications/
http://doi.acm.org/10.1145/1879141.1879173
https://irtf.org/anrw/2016/anrw16-final13.pdf
https://irtf.org/anrw/2016/anrw16-final13.pdf

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

[24] R. Secchi, A. Venne, and A. Custura, “Measurements concerning the

DSCP for a LE PHB,” Presentation at the TSVWG meeting, 99th IETF,

Jul. 2017. [Online]. Available: https://datatracker.ietf.org/meeting/99/materials/

slides-99-tsvwg-sessb-31measurements-concerning-the-dscp-for-a-le-phb/

[25] B. Trammell, M. Kühlewind, P. De Vaere, I. R. Learmonth, and G. Fairhurst, “Tracking

transport-layer evolution with PATHspider,” in Proceedings of the Applied Networking Research

Workshop (ANRW), Prague, 2017, pp. 20–26. [Online]. Available: https://irtf.org/anrw/2017/

anrw17-final16.pdf

[26] P. Wette and H. Karl, “DCT2Gen: A versatile TCP traffic generator for data centers,”

https://www-old.cs.uni-paderborn.de/fachgebiete/fachgebiet-rechnernetze/people/

dr-philip-wette/dct2gen.html, 2014.

42 of 66 Project no. 644334

https://datatracker.ietf.org/meeting/99/materials/slides-99-tsvwg-sessb-31measurements-concerning-the-dscp-for-a-le-phb/
https://datatracker.ietf.org/meeting/99/materials/slides-99-tsvwg-sessb-31measurements-concerning-the-dscp-for-a-le-phb/
https://irtf.org/anrw/2017/anrw17-final16.pdf
https://irtf.org/anrw/2017/anrw17-final16.pdf
https://www-old.cs.uni-paderborn.de/fachgebiete/fachgebiet-rechnernetze/people/dr-philip-wette/dct2gen.html
https://www-old.cs.uni-paderborn.de/fachgebiete/fachgebiet-rechnernetze/people/dr-philip-wette/dct2gen.html

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

A NEAT Terminology

This appendix defines terminology used to describe NEAT. These terms are used throughout this doc-

ument.

Application An entity (program or protocol module) that uses the transport layer for end-to-end de-

livery of data across the network (this may also be an upper layer protocol or tunnel encapsula-

tion). In NEAT, the application data is communicated across the network using the NEAT User

API either directly, or via middleware or a NEAT Application Support API on top of the NEAT User

API.

Characteristics Information Base (CIB) The entity where path information and other collected data

from the NEAT System is stored for access via the NEAT Policy Manager.

NEAT API Framework A callback-based API in NEAT. Once the NEAT base structure has started, using

this framework an application can request a connection (create NEAT Flow), communicate over

it (write data to the NEAT Flow and read received data from the NEAT Flow) and register callback

functions that will be executed upon the occurrence of certain events.

NEAT Application Support Module Example code and/or libraries that provide a more abstract way

for an application to use the NEAT User API. This could include methods to directly support a

middleware library or an interface to emulate the traditional Socket API.

NEAT Component An implementation of a feature within the NEAT System. An example is a “Happy

Eyeballs” component to provide Transport Service selection. Components are designed to be

portable (e.g. platform-independent).

NEAT Diagnostics and Statistics Interface An interface to the NEAT System to access information

about the operation and/or performance of system components, and to return endpoint statis-

tics for NEAT Flows.

NEAT Flow A flow of protocol data units sent via the NEAT User API. For a connection-oriented flow,

this consists of the PDUs related to a specific connection.

NEAT Flow Endpoint The NEAT Flow Endpoint is a NEAT structure that has a similar role to the Trans-

mission Control Block (TCB) in the context of TCP. This is mainly used by the NEAT Logic to

collect the information about a NEAT Flow.

NEAT Framework The Framework components include supporting code and data structures needed

to implement the NEAT User Module. They call other components to perform the functions

required to select and realise a Transport Service. The NEAT User API is an important component

of the NEAT Framework; other components include diagnostics and measurement.

NEAT Logic The NEAT Logic is at the core of the NEAT System as part of the NEAT Framework com-

ponents and is responsible for providing functionalities behind the NEAT User API.

NEAT Policy Manager Part of the NEAT User Module responsible for the policies used for service se-

lection. The Policy Manager is accessed via the (user-space) Policy Interface, portable across

platforms. An implementation of the NEAT Policy Manager may optionally also interface to ker-

nel functions or implement new functions within the kernel (e.g. relating to information about

a specific network interface or protocols).

43 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

NEAT Selection Selection components are responsible for choosing an appropriate transport end-

point and a set of transport components to create a Transport Service Instantiation. This utilises

information passed through the NEAT User API, and combines this with inputs from the NEAT

Policy Manager to identify candidate services and test the suitability of the candidates to make a

final selection.

NEAT Signalling and Handover Signalling and Handover components enable optional interaction

with remote endpoints and network devices to signal the service requested by a NEAT Flow, or to

interpret signalling messages concerning network or endpoint capabilities for a Transport Ser-

vice Instantiation.

NEAT System The NEAT System includes all user-space and kernel-space components needed to re-

alise application communication across the network. This includes all of the NEAT User Module,

and the NEAT Application Support Module.

NEAT User API The API to the NEAT User Module through which application data is exchanged. This

offers Transport Services similar to those offered by the Socket API, but using an event-driven

style of interaction. The NEAT User API provides the necessary information to allow the NEAT

User Module to select an appropriate Transport Service. This is part of the NEAT Framework

group of components.

NEAT User Module The set of all components necessary to realise a Transport Service provided by

the NEAT System. The NEAT User Module is implemented in user space and is designed to be

portable across platforms. It has five main groupings of components: Selection, Policy (i.e. the

Policy Manager and its related information bases and default values), Transport, Signalling and

Handover, and the NEAT Framework. The NEAT User Module is a subset of a NEAT System.

Policy Information Base (PIB) The rules used by the NEAT Policy Manager to guide the selection of

the Transport Service Instantiation.

Policy Interface (PI) The interface to allow querying of the NEAT Policy Manager.

Stream A set of data blocks that logically belong together, such that uniform network treatment would

be desirable for them. A stream is bound to a NEAT Flow. A NEAT Flow contains one or more

streams.

Transport Address A transport address is defined by a network-layer address, a transport-layer pro-

tocol, and a transport-layer port number.

Transport Service A set of end-to-end features provided to users, without an association to any given

framing protocol, which provides a complete service to an application. The desire to use a spe-

cific feature is indicated through the NEAT User API.

Transport Service Feature A specific end-to-end feature that the transport layer provides to an appli-

cation. Examples include confidentiality, reliable delivery, ordered delivery and message-versus-

stream orientation.

Transport Service Instantiation An arrangement of one or more transport protocols with a selected

set of features and configuration parameters that implements a single Transport Service. Exam-

ples include: a protocol stack to support TCP, UDP, or SCTP over UDP with the partial reliability

option.

44 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

B Example JSON file for a fling test

An example JSON file for fling is shown in Listing 4; both the client and server execute it after an

HTTPS handshake has completed. In this example, the fling client sends a SYN packet and then waits

for up to 2000 ms to receive a SYN/ACK packet which it stores upon reception. The server waits for up

to 2000 ms to receive a SYN packet which it stores upon reception—entering state “S1”—and, either

upon timer expiry or immediately after receiving the packet, enters state “S2”. Then it immediately

sends a SYN/ACK in response.

1 {"name":"TCP SYN/ACK test",

2 "__index":{"0":"TCP SYN",

3 "1":"TCP SYN/ACK"},

4 "packet_Info":[

5 {"name":"TCP SYN",

6 "portFlip":[0,2,2],

7 "ChksumType":"adler-32",

8 "ChksumPos":[16,0],

9 "ChksumLen":[2,0],

10 "ChksumPseudoHDR":true},

11 {"name":"TCP SYN/ACK",

12 "portFlip":[0,2,2],

13 "ChksumType":"adler-32",

14 "ChksumPos":[16,0],

15 "ChksumLen":[2,0],

16 "ChksumPseudoHDR":true}],

17 "client":{

18 "state_sequence":["S1"],

19 "states":[{"state":"S1",

20 "send":["TCP SYN"],

21 "recv":["TCP SYN/ACK"],

22 "delaySend":[0],

23 "timeout":[2000]}]},

24 "server":{

25 "state_sequence":["S1","S2"],

26 "states":[{"state":"S1",

27 "recv":["TCP SYN"],

28 "timeout":[2000]},

29 {"state":"S2",

30 "send":["TCP SYN/ACK"],

31 "delaySend":[0],

32 "timeout":[2000]}]}}

Listing 4: JSON file for a simple TCP SYN-SYN/ACK dialogue test.

In a fling experiment description, every state contains the entries “send” or “recv” (or both). When-

ever there is a recv entry, there must be a timeout, to specify how long fling will wait for reception of

the specified packet. The last state must have a timeout anyway, even when there is no recv, because

45 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

the timeout is also used to check if the transmitted packet made it to the other end. For each state,

multiple packets can be specified to be sent or received, and each transmission can be accompanied

by a “delaySend” value: the time that fling waits before sending a packet.

Listing 4 also shows the common header of a fling experiment description. It contains the name

of the experiment as well as an index entry that maps the pcap file packet numbers to names in the

description text. In this example, the pcap file contains a SYN packet, followed by a SYN/ACK packet.

46 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

C How to build and test NEAT applications in MONROE

In the following, we explain how to create a MONROE experiment that is able to be deployed and run

on MONROE nodes that include the NEAT library, making it possible for the experiment to call NEAT

API functions. We provide a practical step-by-step example on how to create, test and deploy a NEAT-

enabled experiment. The code of our example is available in the neat-monroe git repository, at: https:

//github.com/NEAT-project/neat-monroe/tree/master/monroe-experiments/neat_test. We also de-

scribe the metadata information gathered by MONROE nodes for all available network connections

and how this information is made available for experiments and for the NEAT Policy Manager (PM).

C.1 Creating NEAT-enabled MONROE experiments

First, you need to install Docker on your machine. MONROE Platform User Manual recommends

installing Docker via an installation script downloaded from the Docker webpage:

wget https : / / get . docker . com −O i n s t a l l . sh

chmod u+x i n s t a l l . sh

. / i n s t a l l . sh

Test your installation, e.g., with Docker’s hello-world example:

docker run hel lo−world

Next, download the MONROE base image for an experiment template. The MONROE toolkit for

creating experiment images is available from MONROE’s GitHub repository. Clone the project with

the following command:

g i t clone https : / / github . com/MONROE−PROJECT/ Experiments . g i t

Use the template folder located in the experiments folder as a base for your image. Copy the

folder and save it under your experiment’s name:

cd Experiments / experiments /

cp −r template n e a t _ t e s t

Rename dockerfile template.docker to match the experiment’s folder name:

cd n e a t _ t e s t

mv template . docker n e a t _ t e s t . docker

Once your experiment has been prepared, you will need to upload the image to your dockerhub

repository to make it available for MONROE certification and deployment. Edit the push.sh bash

script to point Docker to your experiment’s dockerhub repository by editing the corresponding line:

CONTAINERTAG=neatuser / neat

Next, you need to prepare your experiment binaries. Our example of experiment is built upon

a simple HTTP client application (neat_http_get) that downloads a file from a specified URL us-

ing the NEAT User API. In our experiment we invoke the script neat_http_get periodically and

we record and store the download time as a result. The source code of neat_http_get is avail-

able in the neat-monroe git repository: https://github.com/NEAT-project/neat-monroe/tree/master/

neat-http-get. It uses cmake to build and package the application into a .deb file. Compilation of the

tool itself is very straightforward, but we need two things to be considered beforehand. First, as already

mentioned, MONROE containers are based on Debian Jessie so, we need to cross compile the appli-

cation against Debian Jessie. Second, we need the NEAT library to be installed on our development

machine.

As a universal solution we can employ a temporary Docker container as a build environment:

47 of 66 Project no. 644334

https://github.com/NEAT-project/neat-monroe/tree/master/monroe-experiments/neat_test
https://github.com/NEAT-project/neat-monroe/tree/master/monroe-experiments/neat_test
https://github.com/NEAT-project/neat-monroe/tree/master/neat-http-get
https://github.com/NEAT-project/neat-monroe/tree/master/neat-http-get

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

cd neat−http−get

sudo docker p u l l monroe/ base

sudo docker run −v $ {PWD} : / mnt − t i monroe/ base bash

Then (inside the container) prepare the build environment:

echo "deb http : / / f t p . debian . org / debian j e s s i e −backports main" >> / etc / apt / sources . l i s t

apt−get update

apt−get i n s t a l l −y −t j e s s i e −backports g i t vim build−e s s e n t i a l cmake

Build and install the NEAT library:

apt−get i n s t a l l −y −t j e s s i e −backports l ibuv1−dev l i b l d n s−dev libmnl−dev l ibjansson−dev l i b s c t p−dev l i b s s l −
dev

cd / root /

g i t clone https : / / github . com/NEAT−p r o j e c t / neat . g i t

cd neat /

mkdir build

cd build /

cmake . .

make

make i n s t a l l

Build and package neat_http_get:

cd /mnt/

mkdir build

cd build /

cmake . .

make

make package

and exit the container.

The resulting package (neat-http-get_1.0.0_amd64.deb) must be copied to the experiment’s

files directory:

cp build / neat−http−get_1 . 0 . 0 _amd64 . deb . . / monroe−experiments / n e a t _ t e s t / f i l e s /

Our experiment script (neat_experiment.sh) looks as follows:

! / bin / bash

Run experiment

CMD=" / usr / bin / neat_http_get −v 1 celerway . com"

while true ; do

DATE= ‘ date +%Y%m%d−%H%M%S.%N‘

FNAME=/monroe/ r e s u l t s / n e a t _ t e s t−$ {DATE } . t x t

TMP_FNAME=/tmp/ n e a t _ t e s t−$ {DATE } . t x t

echo −n " / usr / bin / time −f ’TIME−SEC : %e ’ $ {CMD} 1>/dev / n u l l 2> $ {FNAME} . . . "

/ usr / bin / time −f ’TIME−SEC : %e ’ $ {CMD} 1>/dev / n u l l 2> $ {TMP_FNAME}

mv $TMP_FNAME $FNAME

echo " DONE"

sleep 15

done

It also must be placed in the monroe-experiments/neat_test/files/ directory. Once the

experiment binaries and scripts are ready, we can start creating the experiment’s Docker image. Ev-

erything we want to install and/or configure in the image must be specified in the image dockerfile,

48 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

neat_test.docker in our example. The interested reader is referred to the Docker documenta-

tion (https://docs.docker.com/engine/reference/builder/) for dockerfile syntax and supported com-

mands. In order to support the NEAT library, the following sections need to be specified in the dock-

erfile.

Base our image on MONROE base container:

FROM monroe/ base

Add yourself as a maintainer of the image:

MAINTAINER name@email . com

Presently, the MONROE base image is build of top of Debian Jessie. In order to support the NEAT

library — which relies on some newer packages not available in the stable Jessie repository — we need

to add the jessie-backport repository to apt/sources.list in our image:

RUN echo "deb http : / / f t p . debian . org / debian j e s s i e −backports main" >> / etc / apt / sources . l i s t

Install the necessary Debian packages required to build and run the NEAT library:

RUN apt−get update && apt−get i n s t a l l −y \

g i t \

time \

build−e s s e n t i a l \

cmake \

libuv1−dev \

l i b l d n s−dev \

l ibjansson−dev \

libmnl−dev \

l i b s c t p−dev \

l i b s s l −dev \

z l ib 1 g−dev \

l ibbz2−dev \

l i b r e a d l i n e−dev \

l i b s q l i t e 3 −dev \

llvm \

l ibncurses5−dev \

libncursesw5−dev \

xz−u t i l s \

tk−dev \

&& apt−get clean

Install the Python version required by NEAT components (e.g., by the Policy Manager):

WORKDIR / opt / celerway

RUN wget https : / /www. python . org / f t p / python / 3 . 5 . 2 / Python −3 . 5 . 2 . t g z

RUN t a r x v f Python −3 . 5 . 2 . t g z

RUN cd Python −3.5.2 && . / configure −−enable−optimizat ions && make −j 8 && make a l t i n s t a l l

Install Python packages required by the Policy Manager:

RUN pip3 . 5 i n s t a l l n e t i f a c e s && pip3 . 5 i n s t a l l a i o h t t p

Download, build and install NEAT project itself:

WORKDIR / opt / celerway

RUN g i t clone https : / / github . com/NEAT−p r o j e c t / neat . g i t

WORKDIR / opt / celerway / neat / build

RUN cmake . . && cmake −−build . && make i n s t a l l

And finally, copy experiment binaries, install them and create the experiment entry point:

COPY f i l e s /* / opt / celerway /

WORKDIR / opt / celerway

RUN dpkg − i neat−http−get_1 . 0 . 0 _amd64 . deb

ENTRYPOINT ["dumb−i n i t " , "−−" , " / bin / bash " , " / opt / celerway / neat_experiment . sh "]

49 of 66 Project no. 644334

https://docs.docker.com/engine/reference/builder/

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

The experiment script neat_experiment.sh is launched when the container starts.

Now you are ready to test and deploy your experiment. The procedure for testing, approval, certi-

fication and deployment for NEAT-enabled experiments is exactly the same as for any other MONROE

experiment and is described in detail in the MONROE Platform User Manual 11. It is worth mentioning

that the preliminary test of the image can be done locally on your own machine, e.g., by running the

following commands:

sudo docker run −v / run /shm/ myresults : / monroe/ r e s u l t s neatuser / neat

And to access the container via bash console:

sudo docker ps //−> to get [CONTAINER_ID]

sudo docker exec − i −t [CONTAINER_ID] bash

C.2 MONROE metadata, Policy Manager and CIB

The MONROE platform gathers metadata information about each network connection. It makes the

metadata available to the experiments by means of ZMQ12. Celerway’s neat-metadata-exporter

is a CIB properties provider intended to run inside the experiment’s container. It listens for messages

coming from a MONROE node on the ZMQ socket, filters and translates the messages to the format

expected by NEAT CIB database and forwards them via a Unix socket to the Policy Manager.

Table 3 shows the metadata properties that are currently supported.

The description of the properties and their possible values can be found in the data-exporter

README, at: https://github.com/NEAT-project/data-exporter/blob/master/README.md. In order

to run the Policy Manager and neat-metadata-exporter in the experiment’s container the follow-

ing steps are required.

Add the following lines to the dockerfile:

RUN apt−get update && apt−get i n s t a l l −y \

libzmq3−dev \

libjsoncpp−dev \

&& apt−get clean

WORKDIR / opt / celerway

RUN g i t clone https : / / github . com/NEAT−p r o j e c t / neat−monroe . g i t

WORKDIR / opt / celerway / neat−monroe/ metadata−exporter / s r c / build

RUN cmake . . && make && make i n s t a l l

Then, start the Policy Manager andneat-metadata-exporter. Both PM andneat-metadata-exporter

daemons need to be running before the experiment starts. For our tutorial we can simply modify the

neat_experiment.sh script to add the following lines at the beginning of the script:

S t a r t p o l i c y manager

mkdir −p / var / run / neat / cib /

mkdir −p / var / run / neat / pib /

python3 . 5 / opt / celerway / neat / p o l i c y /neatpmd −−sock / var / run / neat / −−cib / var / run / neat / cib / −−pib / var / run /

neat / pib / &

S t a r t neat metadata exporter

neat−metadata−exporter −−cib−socket / var / run / neat / neat_cib_socket &

For the sake of simplicity our example has not optimised the container size. To reduce the final

image size all intermediate files should be stripped from the image. Additionally, each command in the

dockerfile creates a file system layer that is then downloaded and applied sequentially when preparing

the experiment container on the nodes. Therefore, the number of steps in the dockerfile should be

11https://github.com/MONROE-PROJECT/UserManual
12http://zeromq.org

50 of 66 Project no. 644334

https://github.com/NEAT-project/data-exporter/blob/master/README.md
https://github.com/MONROE-PROJECT/UserManual
http://zeromq.org

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

kept to a minimum, by combining multiple instructions into a single docker command. Also, instead

of installing dev packages and building software inside the container, we should install binaries or

packages directly. Please refer to the MONROE Platform User Manual for additional tips for image

optimisation.

51 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

D Paper: fling: A Flexible Ping for Middlebox Measurements

The following research paper [12] has been produced by project participants, and is accepted for pub-

lication at the 29th International Teletraffic Congress (ITC 29) to be held in Genoa, Italy in September

2017.

52 of 66 Project no. 644334

fling: A Flexible Ping for Middlebox Measurements
Runa Barik, Michael Welzl

Department of Informatics,
University of Oslo, Oslo, Norway
{runabk,michawe}@ifi.uio.no

Ahmed Elmokashfi
Simula Research Laboratory, Norway

ahmed@simula.no

Stein Gjessing, Safiqul Islam
Department of Informatics,

University of Oslo, Oslo, Norway
{steing,safiquli}@ifi.uio.no

Abstract—Middleboxes in private networks have been known
to change packets in many ways, making it hard to design
protocol extensions that work for the large majority of Internet
users. Addressing the need to know what such middleboxes do,
we introduce a tool called fling (“flexible ping”). fling can carry
out (almost) any kind of protocol dialogue between a server and
a client based on a simple specification in a json and a pcap file,
and identify what middleboxes do to the packets of the dialogue.
This fills a gap in the state of the art, where other tools that
control both ends of a path are either limited in some form
or have to be updated for every new test. We present results
from small-scale tests that prove the flexibility of fling, which
is a prerequisite for our next step: development of a large-scale
measurement platform.

Index Terms—Middlebox, Measurement, fling

I. INTRODUCTION

When developing protocol extensions in the IETF, it is often
important to know what will happen to particular types of
packets along a path (“If we add an option to this packet,
is it more likely to be dropped? Will the option often be
removed?”). Such considerations have played a major role
in the design of Multipath TCP (MPTCP) [40]. Middleboxes
have also been shown to harm network measurements per
se [13]. Our previous work [11] investigated the effects of
middleboxes on certain fields of the IP header, and found
that nonzero DSCP values may provoke consistent packet loss.
This has affected the IETF rtcweb standard1. While this small
measurement study already used a preliminary prototype of
fling, this is the first time that we fully describe the tool itself.2

During the past decade, deployment of large scale mea-
surement infrastructures has become popular both to inform
policy makers and help users gain insights into their network
performance (e.g., M-Lab, RIPE Atlas, BISmark, SamKnows,
etc.). A good overview of existing measurement platforms
is given in [9]. Most of them use customized variants of
ping, traceroute, ntp, netstat, iperf, etc. to measure various
network aspects, but they usually do not focus on analyzing
the influence of middleboxes on traffic. Some can detect
middleboxes to some extent: for example, Netalyzr [29] sends
TCP and UDP packets to test port reachability and test for
proxies, uses an ESP header over UDP packets to detect IPSec

1https://www.ietf.org/mail-archive/web/tsvwg/current/msg14431.html
2We also presented an earlier prototype at the IMC 2016 Works-in-Progress

Session.

NATs, performs Path MTU Discovery and examines the effect
of IP fragmentation.

A number of tools were designed to specifically measure the
impact of middleboxes. For instance, TCPExposure [25] tests
certain TCP options between clients and a dedicated server,
and tracebox [17] combines middlebox testing with traceroute
to deduce packet changes from the payload of ICMP Echo
Reply messages. Generally, doing tests that require more than
normal user privileges from people’s homes, which is where
most problematic middleboxes are expected, is a difficult
matter. It has been achieved via payment, e.g. to ship dedicated
hardware [5], [44] or pay users to run a tool [32] (which
creates a natural scalability limit), or by limiting the campaign
to one-time tests, where testers are personally asked to run
a tool that was created for a particular test. Such a one-time
measurement campaign was done with TCPExposure [25], and
the difficulty of repeating experiments is one of the lessons
learnt according to the authors [24].

We introduce fling—our attempt to learn from these past
success stories and combine them in a way that makes it easy
to repeat two-sided middlebox measurements, even when they
require administrator privileges. fling is an end-to-end active
measurement tool that allows testing whether an arbitrary
sequence of packets can be exchanged between a fling client
and a fling server. These packets are defined in a PCAP
file, which is accompanied with a JSON file that describes
a dialogue. Tests are uploaded to the server and pulled by
fling clients whenever they run, such that clients do not need
to be updated whenever new tests are defined.

fling resembles ping in that it sends a number of packets
from a fling client to a fling server and expects a few packets
in return. Different from ping, these packets are not all equal
– and fling executes a dialogue that is defined per test and can
be much longer and more complex than ping’s exchange of
two packets. The security implications of ping are well known
because ping is simple and well understood. We expect the
same to be the case for fling—at the same time, we tried to
make it as flexible as possible. Naturally, there are limitations
to this flexibility (100% flexibility can only be achieved by
installing new code for each measurement, which we wanted
to avoid). Like ping, fling is not intended and cannot be
(reasonably) used for bandwidth measurements; it is meant for
sending and receiving a handful of packets and seeing what
happened to them.

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

53 of 66 Project no. 644334

TCPExposure is very similar to fling: it supports a client-
server dialogue of any type of packets and observes what
happens to them along the path. However, with TCPExposure,
for every new test, the code would have to be updated,
and users would have to be asked to install it and run an
experiment. We wanted to develop a static tool that would
yield this flexibility without requiring to get in touch with
users and ask them to install new code.

Netalyzr is attractive for users to run as it lets them learn
about their own network connectivity. It managed to attract a
large user base. We tried to learn from that lesson by offering
the same type of feedback to users that download and run
fling on their home machines; in our case, the effort to use it
is higher (it is not embedded in the browser, because we need
to use raw sockets) but the range of possible outputs is wider
(because we use raw sockets). Also similar to Netalyzr, it is
possible to update tests by changing a dedicated server only.
Like tracebox, fling also identifies where on the path a packet
change or drop occurred.

After an overview of related work in the next section,
section III will introduce the design of fling, including a
discussion of its inevitable limitations. We have put these
limitations to the test with a small measurement study, which
we report about in Section IV. Section V concludes the paper
and discusses our next steps towards the development of a
permanent fling measurement platform.

II. RELATED WORK

The increasing popularity of middleboxes has motivated
several efforts to characterize their deployment and assess
their impact on data plane performance. Medina et al. [34],
[35] actively probed a set of web servers using TBIT [39]
to assess the interaction between middleboxes and transport
protocols. Honda et al. [25] developed TCPExposure to test
whether TCP options are supported. TraceBox [17] improved
over TCPExposure by proposing a Traceroute-like approach
to pinpoint routers that alter or discard TCP options. Cravan
et al. [16] proposed TCP HICCUPS, a tool that reveals
TCP header manipulation to both ends of a TCP connection.
PATHspider [31] is a recent tool that allows for A/B testing of
a baseline configuration against an experimental configuration.

Table I provides an overview of the measurement tools
mentioned above, and shows how they compare to fling. The
first two columns illustrate a limitation of prior work that
fling addresses: while almost all of the tools use raw sockets,
potentially allowing them to transfer any type of Internet
packet, experiments so far have mostly been limited to TCP
over IP: the TCP header’s source port, initial sequence number,
window and option fields were the focus of [16], [17], [25],
the IP header’s DSCP, ECN, flags, source address and option
fields were considered in [11], [21], [34], [35], [37]–[39], [45],
[46], while, to the best of our knowledge, the only recent
middlebox measurement studies considering protocols such as
UDP, SCTP and DCCP are [22], [33] and [19].

Other papers focused on investigating specific types of
middleboxes such as web proxies [47], transparent HTTP

proxies in cellular networks [48], firewalls and NATs policies
in cellular networks [46], and carrier grade NATs [37]. Tram-
mell et al. [45] have proposed correlating measurements from
diverse vantage points to build a map of middlebox-induced
path impairments in the Internet.

fling bears some resemblance to pcap replaying tools such
as tcpreplay [6] and its variants; it differs in that fling is
two-sided, describing a complete dialogue, with timeouts,
behaviour that is triggered by the reception of packets, etc.
We will now turn to a full description of fling’s design.

III. fling DESIGN

Ping sends a number of specific packets (typically ICMP
Echo Request) to a host and expects to get the same number
of reply packets (typically ICMP Echo Reply). In essence, this
is also what fling does, but it adds flexibility: any packet can
be used instead of ICMP Echo Requests, and the dialogue
can take any form, involving multiple packets (e.g. in case
of TCP, using only single packets would limit fling tests to
SYN-SYN/ACK tests).

{"name":"TCP SYN/ACK test",
"__index":{"0":"TCP SYN",

"1":"TCP SYN/ACK"},
"packet_Info":[{

"name":"TCP SYN",
"swap":[0,2,2],
"ChksumType":"adler-32",
"ChksumPos":[16,0],
"ChksumLen":[2,0],
"ChksumPseudoHDR":true
},{
"name":"TCP SYN/ACK",
"swap":[0,2,2],
"ChksumType":"adler-32",
"ChksumPos":[16,0],
"ChksumLen":[2,0],
"ChksumPseudoHDR":true}],

"client":{
"state_sequence":["S1"],
"states":[{

"state":"S1",
"send":["TCP SYN"],
"recv":["TCP SYN/ACK"],
"delaySend":[0],
"timeout":[2000]
}]},

"server":{
"state_sequence":["S1","S2"],
"states":[{

"state":"S1",
"recv":["TCP SYN"],
"timeout":[2000]
},{
"state":"S2",
"send":["TCP SYN/ACK"],
"delaySend":[0],
"timeout":[2000]

}]}}

Figure 1: json file for a simple TCP SYN-SYN/ACK dialogue test

A fling client is a static piece of software; it begins a
test by pulling a test description (a pcap file containing the
test packets and a json file describing the test) from the
server, which it then executes. A test description specifies the
packet types, some information about header fields, and the
sending/receiving sequences of the dialogue. It never contains

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

54 of 66 Project no. 644334

Tool Raw
sockets

Test protocols
other than TCP Test update: need to change

Fully controlled
client-server

dialogue

Detect TCP
connection

splitters

tracebox-like
location detection

fling 3 3 Server 3 3 3

Netalyzr 7 3* Server 3 3** 3‡

TCPExposure 3 7 Both 3 3 7

HICCUPS 3 7 Both 3 3 7

Tracebox 3 3 Client 7 3 3‡

PATHspider 3 3 Client 7 3 3‡

TBit 3 7 Client 7 7 7

Table I: Comparison of related tools. *ICMP,UDP; ‡One-sided only; ** only HTTP proxies.

addresses: a fling client always only talks to a specified
(supported as a command-line option) fling server. This allows
to fully control the dialogue and collect measurement results at
the server for research use; it also serves as a security measure,
by ensuring that attackers cannot design tests that would turn
fling clients into sources of traffic towards some other hosts
in the network. To avoid getting in the way of normal Internet
usage of fling users, the total maximum number of packets
transmitted by fling is also statically configurable by the client.

An example json file is shown in figure 1; both the client
and server execute it after an HTTPS handshake (this is the
control channel, which we will explain in the next section).
Every fling test begins with at least one packet from the
client. In our example, the client sends a SYN packet and
then waits for up to 2000 ms to receive a SYN/ACK packet
which it stores upon reception. Starting from the point where
it answers the HTTP request (see Fig. 2), the server waits
for up to 2000 ms to receive a SYN packet which it stores
upon reception (state “S1”). Then, either upon timer expiry
or immediately after receiving the packet, it enters state “S2”
and sends a SYN/ACK in response.

In a fling experiment description, every state contains a
timeout, which gives a limit for the duration of the state.
Packets are logged until the state is over. The entries “send”
or “recv” are used to transmit packets or expect the reception
of packets, respectively. Receiving packets in accordance with
“recv” terminates a state before the timeout. For each state,
multiple packets can be specified to be sent or received,
and each transmission can be accompanied by a “delaySend”
value: the time that fling waits before sending a packet. When
a state contains “send”, the state’s timeout begins after the last
packet was sent.

Figure 1 also shows the common header of a fling experi-
ment description. It contains the name of the experiment as
well as an index entry that maps the pcap file packet numbers
to names in the description text (in this example, the pcap
file contains a SYN packet, followed by a SYN/ACK packet).
The “packet info” statement contains information about port
swapping and checksums; we will explain this later.

A. The Fling Control Channel

fling is not meant to be shipped with a specific set of tests;
rather, it obtains tests from a fling server. This query is made
using HTTPS, initiated by the client (because we assume that
many fling clients would operate behind a NAT). We call
this HTTPS communication the Fling Control Channel (FCC)

because it is used to transmit more control information—
among them, a nonce that the client inserts into fling packets,
at a position that can be defined per packet as part of the test
description.

The nonce allows the server to identify fling packets. Be-
cause the idea of fling is to allow exchanging any packet type,
we cannot rely on common methods to determine where a
packet comes from. Consider, for example, two clients behind
the same NAT, doing an ICMP test: because ICMP has no
port numbers, we need our own identifier to tell these clients
apart.

The FCC also lets us transport the client’s received fling
packets back to the server as HTTPS payload for further
analysis, and it is used to control experiment initiation and
termination. As shown in the Fig. 2, a session begins with the
client sending an HTTPS GET request containing an empty
“Hello” message. The server answers with a test number, the
pcap and json files, a salt value for nonce generation and a
dictionary that contains a random number for each fling packet.
It also starts the first timer to wait for incoming fling packets.
When the client gets the HTTP response, it starts the test by
transmitting the first fling packet. When the test is finished,
the client sends its results (all logged packets that it received)
as HTTPS payload to the server, and the server responds with
some further data about the test that is useful for the client to
give feedback to the user.

HTTPS: HELLO

HTTPS: POST, Results

 packet mapping dictionary

File
Pcap

1

2

fling packet

first fling packet

HTTPS: Response

Json
Specification

Test

fling Client fling Server

Middlebox RouterRouter

5i
Extreme

HTTPS: Response, salt, Json,Pcap

Figure 2: fling client and server interaction. The server starts the first
timer at (1). At (2), the client begins by sending the first fling packet
and starting its first timer.

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

55 of 66 Project no. 644334

B. Security and NATs

fling’s nonce lets the server associate fling packets with
the preceding HTTPS handshake. It also prevents a reflector
attack, where an attacker would alter a fling client to provoke
the server to send packets back to a spoofed source address.
The nonce is the concatenation of the 8-bit salt value per
experiment and a random number generated for each packet.

In the interest of flexibility, we allow freedom to choose
the length of the nonce and to specify where in the packet it
should be written. For the position of the nonce, an experiment
designer could use any parts of a header that are likely to be
immutable or—for data packets—use the payload. To handle
cases where the nonce is in the payload and middleboxes
insert header fields (e.g. options), the nonce offset can also
be provided from the end of the packet (decided by optionally
including a “fromBack” attribute in the json file). The default
nonce length is 16 bit and the default position is the mostly
unused Identification field in the IP header.

We chose a field of the IP header as a default position
because we cannot make a default assumption about packet
headers following IP; for fling, anything can be there. This
also explains the need to specify details about a checksum
(“packet Info” in figure 1): if the nonce is written into a
transport header or payload, this header’s checksum will need
to be recalculated. The value cannot be known beforehand
because the nonce is calculated at run time.

fling allows a minimum nonce length of 8 bit (0 bit for
the random numbers; such experiments can only contain one
packet from each side). Because the nonce can be so small,
the server also limits its responses to tests from the same
IP address that was used on the HTTPS connection. Using a
short nonce increases the chance for an attacker that is behind
the same NAT as a regular fling client (or changes its source
address to match an ongoing fling test) to inject wrong packets
that the server would be forced to accept.

In a truly end-to-end Internet, the transport header should
not matter to routers and fling should be able to do whatever
it wants on top of IP. This notion is, however, already broken
by NATs, which, in practice, often carry out NAPT (Network
Address and Port Translation) [42]. When a client sends
packets of a known transport protocol (e.g. TCP or UDP)
from behind a NAT, the server cannot just apply a statically-
defined transport header, but it needs to swap the NAT-written
port numbers. Whether this functionality is desired or not
depends on the packet format (e.g., ICMP does not have ports).
Therefore, if “packet Info” in the test description contains
“swap: [loc1,loc2,len]” where loc1 is the location of source
port, loc2 is the location of the destination port and len is the
length of ports in bytes, the server sets the ports accordingly
instead of taking them from the pcap file. This is another
reason to carry out a checksum calculation. The attributes
“swap” and “ChksumPos” are specified relative to the front
of the transport header.

“swap” is in fact shorthand for two “copy” operations that
copy fields from previously arrived packets. An example from

our measurement campaign that highlights the need of such a
generic “copy” operation is discussed in section IV-A.

C. Narrowing Down the Root Cause of Packet Drops

Given that fling is about reachability and tries to detect what
middleboxes do to packets, we should be able to detect the
rough location of middleboxes that change or drop packets.
Moreover, if a fling packet is dropped on a path, we need to
ensure that it happened due to the middlebox’s behavior, not
due to congestion. Hence, we rely on using additional packets
that we call anchor packets. Our anchor packets are either
of type ICMP Echo Request or TCP SYN, and we answer
them with ICMP Echo Reply or TCP SYN/ACK packets,
respectively. Since NAT boxes use the id and seq fields of
the ICMP header to map ICMP reply to request packets, we
also maintain the correct values for the id and seq fields of
the request and reply packets [41]. Since both the client and
server need to be able to associate anchor packets to their
corresponding fling packets, we store the last 16 bits of the
nonce value in the IP header’s 16-bit Identification field of
the anchor packet (if the nonce is smaller, the remaining bits
are set to 0). Note that any kind of anchor packet can be
defined as part of the test description itself, making the test
description slightly more complex but allowing full flexibility
for the placement of the nonce.

Anchor packets have strictly two purposes: 1) detect con-
gestion, 2) trigger a tracebox-like test. They are not meant as
a replacement for A/B-measurements, where type A packets
would differ from type B packets in a particular way and
it could be established that the difference between A and B
caused an effect. Such measurements can easily be designed
with fling by including both type A and B packets in a test
description. A fling test could also easily define its own special
packets to be sent in conjunction with all other measurement
packets (“send” in the json syntax operates on arrays, making
it easy to send multiple packets), as a way of implementing
customized anchor packets. We hard-coded ICMP Echo Re-
quest/Reply and TCP SYN-SYN/ACK purely for convenience.

We send an anchor packet immediately ahead of every
outgoing fling packet. The idea is that repeatedly losing
both packets together gives an indication that the packets
were dropped due to congestion (refer to Table II). More
importantly, if the anchor packet repeatedly arrives but the fling
packet does not, this is a strong indication of a middlebox-
induced packet drop. Thus, if a fling packet is dropped we
repeat the test up to three times. This number is configurable.

Fig. 3 shows how the client detects a packet drop using
anchor packets. After knowing that a fling packet was dropped,
we try to find the location of the drop by repeatedly sending
the same fling packet with a growing TTL starting from 1. As
soon as no ICMP TTL exceeded error packet arrives, we know
the location of the packet drop. Because we send the results
of these tests back to the server in the final HTTPS exchange,
the server can also identify changes that may have happened
to the fling packet given that responding routers are RFC1812-
compliant [10]. This approach is similar to tracebox [17].

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

56 of 66 Project no. 644334

x }

fling Client fling Server
Router Middlebox Router

5i

T
im

eo
u

t

ICMP packet (Echo−Reply), IP_id=nonce1

After 3 times: tracebox−like test

ICMP packet (Echo−Request), IP_id=nonce1

fling packet, IP_id=nonce1

Extreme

Figure 3: Detection of fling packet drop and middlebox location

fling
packet

anchor
packet

Interpretation

PASSED PASSED SUCCESS
PASSED DROPPED SUCCESS
DROPPED PASSED Repeat 3×. Then, as-

sume:
MIDDLEBOX DROP;
start tracebox-like test

DROPPED DROPPED Repeat 3×. Then,
assume:
CONGESTION; start
tracebox-like test

Table II: Interpretation of arriving or dropped fling / anchor packets.
CONGESTION: in one type of fling test, anchor packet passes and in
another, it is dropped. SUCCESS: all fling packets passed; if packets
have changed in transit, start tracebox-like test.

IV. EVALUATION

We have prototyped fling in Python, based packet capturing
and manipulation on Scapy [7], and prepared tests for 36
distinct protocols and protocol options. By preparing a test, we
mean that we have generated all needed packet traces to test
a protocol or an option. We then asked friends and colleagues
to run fling. In total, 34 users ran fling, and each test was
run against three servers simultaneously to avoid any server-
related bias, giving us a total of 3384 tests. One of the three
servers was hosted on Amazon EC2 cloud and the other two
were hosted in Norway, where they were connected to the
Internet via two different ISPs. The tests originated from nine
countries with over half of them coming from Norway and
Austria. Further, about two thirds of users stated that they ran
the tests from their homes.

Next, we present our tests and the trial run results. Note that
the goal of these runs is not to make a general statements about
the support of specific protocols in the Internet, but rather to
examine fling’s flexibility. We, however, plan to conduct large
scale measurement campaigns in the future.

A. Test Design

To evaluate the flexibility of fling, we first analyzed mid-
dlebox measurements from previous work to try to under-
stand whether we could replicate them. These measurements
include:
• The ECN tests from TBIT [34], [35], [38], [39] and [30].

• The TBIT TCP options tests, and the IP options tests
from TBIT and [21].

• The TCPExposure [25] tests: using MP CAPABLE,
MP DATA, MP ACK, the Timestamps option, and a TCP
handhake followed by data and ACK packets (containing
SACK) to check for sequence number changes.

• The HICCUPS [16] tests, where special numbers are
inserted in the sequence number, IP Identification and
receive window fields to convey integrity information.

We find that fling can replicate almost all of these tests, with
only very minor limitations: because it relies on the nonce,
fling cannot detect TCP splitters in the same way TCPExpo-
sure does; it does however detect them during its tracebox-
like test phase. In some cases, a dynamic decision taken in a
test must be replaced with separate static tests. For example,
two static tests for SYN-SYN/ACK handshaking with or
without ECN set-up are needed to replicate the TBIT ECN
test; similarly, two tests are needed to conditionally answer
a packet containing the MP DATA option with MP ACK or
not, depending on whether MP DATA passed through the path
(this is done by TCPExposure). Finally, in HICCUPS [16], the
values of the altered fields in the SYN/ACK packet are the
result of a computation on the received SYN packet. Because
it does not allow to define arbitrary calculations on header
fields, fling cannot truly replicate the behavior of HICCUPS,
but it can detect all the header changes that HICCUPS also
detects.

Next, we decided to run a variety of protocols over IP, and
do tests with changes applied to the IP header (e.g. testing
options or unknown protocol numbers) and the TCP header
(e.g. testing options or using a wrong value in the Data Offset
field). The complete set of tests that we carried out is listed
in Table III; these were pure fling tests, i.e. packets of the
described type were transmitted between the clients and the
server to see what would happen to them along the path. This
table also shows how many tests succeeded. We only decided
that a test failed when all three repetitions failed; if, in these
three failures, anchoring ICMP messages were dropped but
ICMP messages passed from the same client at least once in
another test, we decided that this failure could have been due
to congestion and removed the test from our set. There was
only one such case.

Again, the static nature of fling highlighted a handful
of limitations: RSVP requires to put IP addresses and port
numbers in the RSVP header. At first, we could not do
this; this prompted us to devise the aforementioned generic
“copy” operation. Some protocols, however, require calcu-
lations, which fling cannot do: a Quick-Start [20] recipient
(server) should generate entries in its response by computing
the TTL difference as (IP TTL–QS TTL) mod 256, and
retrieving the allowed rate request from the received IP option.
Similarly, the AH Integrity Check Value (ICV) in the OSPF/AH
test is wrong because fling changes the underlying IPv4 header
but does not recalculate this value (section 3.3.3 of [28]).

Complete flexibility can only be attained by installing new
code for each test, or allowing to specify an actual protocol

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

57 of 66 Project no. 644334

(arbitrary operations on header fields based on prior received
headers and local state). With fling, we intend to strike a
balance in trying to be simple yet flexible. We conclude from
our test design study that, despite being unable to do absolutely
all tests, the number and diversity of tests that fling can do is
indeed large: it was able to replicate the large majority of tests
from existing work and allowed us to carry out truly “crazy”
tests involving e.g. changes to the IP header that follow an
obsolete specification, wrong field combinations in TCP, or
transmit OSPF, HIP and DCCP packets end-to-end.

Next, we briefly evaluate the results of our tests. Our test set
is small: at this stage, our intention is to test-drive fling before
we roll it out on a larger scale. Thus, we do not try to derive
broad statements about the Internet from our measurements,
but we want to ensure that such statements could be derived
in a larger-scale study.

B. Results

Table III shows the tests that we carried out. Unless other-
wise noted, all protocols were used directly over IP, and Scapy
defaults apply to header fields. IP and TCP header tests used
Scapy-generated packets: a TCP SYN from client to server (src
port 48001, dst port 443), and a TCP SYN/ACK in response.
The “Success ratio” column shows the fraction of successful
runs (i.e., all fling packets reached the other side within 3
trials) for each test.

As expected, no protocol has a 100% success rate except for
UDP. Broadly speaking, our tests can be classified into four
categories: IP header changes, IP protocols, TCP options, and
transport protocols other than TCP. Packets with IP header
changes were among the least likely to pass end-to-end,
confirming earlier observations about IP options [21]. While
an unknown TCP option worked in 50% of the cases, a wrong
Data Offset value worked in only 5%. This indicates that the
success of an unknown option does not mean that middleboxes
do not look inside the TCP header; they do look, but they often
allow unknown options to pass.

SCTP appears to enjoy a decent support with 2/3 of the tests
succeeding; this Internet test confirms the local testbed result
in [22]. We inspected all failed tests and found that in over
95% of cases a test failed to all three servers, which indicates
that the packet drop happened close to the client. IP option
tests succeeded only from one client to one server, which both
were from the same autonomous system, indicating different
blocking policies for intra and inter domain traffic.

As mentioned above, once a server or a client detects that
a test has failed, it attempts to determine the packet drop
location by repeatedly sending the dropped packet with a
growing TTL starting from one. Figure 4 shows the packet
drop location in terms of the number of hops. These plots
show that most of the blocking either happens at the client’s
immediate gateway or two hops away. Further, there is a
significant fraction of blocking that happens several hops away
from the client on the forward path. This, however, is not the
case on the reverse path. Since the tests are always client-
initiated, the above observations hint that whenever a test

 0

 10

 20

 30

 40

 50

 60

 70

 5 10 15 20

P
a

th
s
 (

in
 %

)

Hop count

All tests
IPHeader change

TCP Options
IP protocols

Transport protocols

 0

 10

 20

 30

 40

 50

 60

 70

 2 4 6 8 10 12 14

P
a

th
s
 (

in
 %

)

Hop count away from client

All tests
IPHeader change

TCP Options
IP protocols

Transport protocols

Figure 4: Packet drop location: forward path (top), and reverse path
(bottom). The reverse path was determined from the server, but it is
shown as the number of hops from the client.

succeeds on the forward path, it is likely to succeed on the
reverse path unless the client’s immediate gateway blocks
incoming packets. Going forward, we plan to take a closer
look at what causes the blocking several hops away from the
client and add functionalities to fling that—depending on user
consent—fingerprint home gateways.

Since fling servers and clients capture all exchanged packets,
we can also investigate whether packet headers and options
were modified. Inspecting packets from successful TCP tests,
we find several cases of altered TCP MSS options and option
removal. For example, the reserved TCP option 100 was re-
moved in 14 experiments and the MPTCP option was removed
in three experiments.

V. CONCLUSION AND NEXT STEPS

Our prototype tests have shown that fling is indeed very
flexible, allowing for a wide range of middlebox tests. Our
tool produces data that lets us better understand if, how, and
where middleboxes influence packets of a certain type as a
result of the dialogue that they witness.

A. Towards a permanent fling platform

So far, we have described and used fling as a tool that a
user downloads and runs once, yielding information about
the network path between the user’s host and our server.3

For the “test-drive” measurement campaign described in this
paper, we had to ask users to run the tool, similar to how
TCPExposure tests were carried out [25]. The true goal of

3This “one-time” fling version is GPL licensed and available from the main
fling webpage.

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

58 of 66 Project no. 644334

Test description Success ratio
Routing and Addressing – Initiation of a HIP session: I1 (a HIP Initiator Packet) is sent to the fling server, and R1 (HIP Responder
Packet) is sent to the fling client. On success, the client sends I2 and in response, it receives R2 (Section 5.3 of [36]). We ran the HIP
package from [1] to collect HIP packets and observed HIP packets over UDP, which we extracted to run HIP over IP.

0.51

QoS – Initiating an RSVP reservation: The fling client sends a Path message to the server, and the server responds with a Resv
message. We used two packets from the pcap file from [4].

0.0

Tunneling – ICMPv6/IPv6: ICMPv6 Echo request with non-existing IPv6 address pair is sent to the fling server which responds with
Echo reply. We used 2 packets from the pcap file from [2].

0.5

ICMPv4/IP/GRE: We set checksum present = 0 in the GRE header. An ICMPv4 Echo request packet is put in an IP/GRE tunnel and
sent to the server. The server responds with an ICMPv4 Echo reply packet over IP/GRE. We used 2 packets from the pcap file from
[2].

0.66

Security – ICMPv4/IP/ESP (Tunnel Mode): The client sends an ESP packet containing an ICMPv4/IP Echo request packet as
encrypted payload. The server responds with an ESP packet containing an ICMPv4/IP Echo reply as encrypted payload. We used two
packets from the pcap file from [8], where it is explained how to decrypt the data stream. We did this to identify the packets.

0.649

AH (Transport Mode): The fling client sends an AH packet to the fling server, and the fling server answers with an AH packet. We
used two packets from the pcap file from [2].

0.585

Transport – SCTP association establishment: The client sends an SCTP INIT packet with src port 48001 to the server on port
443, and the server answers with an INIT ACK packet. Then, the client responds with COOKIE ECHO and the server responds with
COOKIE ACK.

0.66

UDP: The client sends a UDP packet with src. port 48001 to the server on port 443, containing 4 bytes of data; the server responds
with a similar UDP packet (but flipped ports).

1.0

UDP-Lite: The client sends a UDP-Lite packet with source port 32768 and destination port 1234, with checksum coverage = 0,
containing 12 bytes of data; the server responds with a similar UDP-Lite packet (but flipped ports). We used two packets from the
pcap file from [4].

0.511

Complete DCCP session: The client sends a DCCP Request packet with src port 32772 to port 5001 and the server answers with a
Response packet. The client answers with an Ack and a DataAck packet containing 256 bytes of data. The server responds with an
Ack. Finally, the client transmits a Close packet and the server responds with a Reset packet. We used the pcap file from [4], shortened
the data transfer and adjusted the sequence numbers of the closing packets.

0.511

IPv4 options – Quick-Start (QS) (QS request [20]): The client sends a packet containing a QS Request option with IP TTL 64, QS
TTL 90, IP option number 25, option length 8, Function Value 0, Rate Request 5 (1.28 Mbit/s), QS Nonce 2, and the reserved field
(2 bits) set to zero. The server responds with a QS Response option as a TCP option in the SYN/ACK packet with Rate Request 5,
TTL Diff 5, QS Nonce 2, and all reserved fields = 0.

0.053

Router Alert [26]: The same option was used on both packets, with value set to zero. 0.053
Security and Extended Security (historic) [27]: We made two tests: one for Basic Security where Classification Level is set to Secret
and SCI and NSA bits set for Protection Authority Flags; and another for Extended Security (zero is set for security info and its code)
along with Basic Security options. Both SYN and SYN/ACK packets carry these options.

0.011

Other IPv4 header changes – DiffServ CodePoint (DSCP): We tested some DSCP values from [18] which proposes to opportunistically
set them for WebRTC: CS1 (8), AF42, EF PHB (46).

0.75

“Evil” bit [12]: The client and server exchange SYN-SYN/ACK packets with this bit set. 0.745
Unknown Protocol numbers (143, 200, 252, 253, 255): The client sends a TCP SYN and the server responds with a TCP SYN/ACK,
but both use the same unknown protocol number.

0.51

TBIT test 2, IP Option X (option number 31): We carried this test out statically, i.e. without retrying three times in case of failure. 0.053
IP options tests from [21]: The client sends a TCP SYN with an IP option to the server on port 80 and the returns it on a TCP
SYN/ACK. We generated the packets with Scapy.

0.06

TCP header changes – TCP Fast Open (TFO) [14]: We downloaded the pcap file from [3], removed two unnecessary packets (an
intermediate GET and a final ACK) and edited the packets to test option kinds 34 (newly allocated) and 254 (experimental). For 254:
The client sends a SYN packet with magic number 63881 and requests a cookie (kind 34 does not use a magic number, but requires
padding). The server responds with a SYN/ACK packet containing the same magic number and a cookie. The client then sends an
HTTP request inside a SYN/Fast Open packet with the same magic number and cookie value. The server responds with a SYN/ACK.

0.628

TCP mood (Test for TCP Happy packet (April 1 RFC [23])): The fling client sends a SYN packet with an option of kind 25 and
value 14889 (“:)” in ascii) for Happy mood, and the server sends a SYN/ACK with a happy mood too.

0.755

TCP NoP (Test for NoP option / wrong Data Offset): This tests what happens if the Data Offset value in the TCP header is wrong,
both for a SYN from the client and the corresponding SYN/ACK from the server. The IP Length field says that the packet is 42 bytes
long and the TCP Data Offset value is 6, meaning 24 bytes. In reality, there are 20 bytes of regular TCP header, 2 bytes of NoP
options, and the last 2 bytes do not exist in this packet.

0.053

TCP unknown option (Test for a large unknown TCP option using reserved option number 100): The client sends a SYN packet
with option kind 100, a correct length field and 40 bytes option content; the server sends a SYN/ACK with the same option.

0.5

TBIT-based ECN test: The client sends a SYN packet with set ECN ECHO and CWR flags to a web server on port 80, and the server
sets the the ECN ECHO flag in the SYN/ACK response. This handshake is (in TBIT, only in case of successful ECN negotiation)
followed by an HTTP request with ECT and CE set in the IP header.

0.66

TCPExposure-based MPTCP tests: The client sends a SYN packet containing the MP CAPABLE TCP option to the server; the
server inserts the MP CAPABLE option in its SYN/ACK response. This is followed by a TCP data packet from the client containing
the MP DATA option, which the server answers using an MP ACK option in its ACK packet.

0.745

Table III: Tests with success ratios (how often packets passed through the network in both directions).

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

59 of 66 Project no. 644334

Figure 5: The front page of the fling platform

fling, however, is to be able to carry out tests without always
having to personally interact with users—we made fling simple
on purpose to increase the chance of convincing users to install
it as a permanent piece of software or deploying it in other
measurement platforms.

To this end, we have already begun to develop a fling
platform that follows the described usage scenario. Figure 5
shows a screenshot of the front page.4 The world map shows
currently active “permanent fling” hosts, which are provided
to us by the NorNet testbed.5 NorNet nodes are multi-homed,
meaning that a marker on the map translates into 2-3 different
IP addresses, connected to different networks (around 4-6 for
IPv6-capable hosts, which are shown in blue). These hosts
are clients, configured to pull and run the current set of tests
every hour. For now, there is only one server, in Oslo, Norway;
however, we are planning to use many other nodes as servers
as well (as part of the initial handshake with the Fling Control
Channel, the main server can inform a “permanent fling” client
about other servers that it should carry out its tests with).

After registering, users can run their own tests on the fling
platform. To do this, a user designs a json test description and
a pcap file containing the packets used in the dialogue. Instruc-
tions are provided on the website; the easiest way to create
a test is by downloading and editing one of our (currently
44) examples, which also are the tests that fling already runs
by default. Next, the user clicks “Use the platform”, where
(s)he can login using her/his credentials. This leads to a private
space where users can upload a test, run it and obtain the result
(typically after 1-2 hours). The output is provided as a zip file
that contains client- and server-side pcap files for every path
that was tested. We are currently developing an auto-generated

4This page is available at http://fling-frontend.nntb.no. Here, we will also
make the source code of all fling components available, and we are planning
to share anonymized datasets as well as a number of select permanent
measurement results in order to identify long-term trends.

5https://www.nntb.no

summary text file to be included in the zip file, containing
more information about the test.

B. Scaling up

To make our platform grow in scale, we see three major
requirements that we need to satisfy:

1. Making it attractive to use: The website must make
it clear that fling is useful and easy to handle. In addition
to offering instructions and example tests, we have therefore
created a page (“Simple example” in the menu) that lets users
interactively test fling on the spot, from the browser. The page
shows a diagram with a 3-way TCP handshake followed by a
data packet sent over TCP; when a user clicks the IPv4 and
TCP headers in the dialogue, the headers are shown with many
editable fields. Next to the dialogue, a map shows the locations
of the two special clients that we have assigned to participate
in this interactive test; one of them is behind a NAT. After
changing header fields at will, a user can press “Run the test”,
wait for a few seconds and obtain output that shows which
packets were dropped and/or fields have changed. Our “one-
time fling” client is also available for download. It is easy to
run and produces an immediate output with interesting facts
about the user’s own Internet connection.

2. Making it attractive to install: The “permanent fling”
client for end users is currently under development. It will be
secure: by definition, fling initially only corresponds with our
own trusted server, which is the only server that is allowed
to redirect a client to other servers (users however need
to accept that arbitrarily “strange” packets are transmitted
between their client and fling servers; we will inform users
about this as they download the permanent client). It will be
possible to limit the total number packets that the client is
willing to send and receive per hour (to limit overall load)
and per second (to prevent fling tests from interfering with
the user’s other traffic). We have discussed more security
aspects in section III. To make the tool itself appealing, we are
considering different options on how the client should present
itself (e.g. a user interface that provides information about
the current connection’s state and informs users about recent
“special” tests). Additionally, as the platform grows, we may
introduce a credit system like the RIPE Atlas [43] or Seattle
[49] to only allow users to upload new tests if they have run
the permanent client for some time.

3. Ensuring scalability: Our server in Oslo serves as a
trusted entry point to the system; it is also the place where
we collect measurement results. This makes our server the
most critical element in the infrastructure. fling is lightweight;
because all tests descriptions are pulled from the server, a
simple server update suffices to limit the number of packets
or the length of a fling measurement (and we can impose such
limits on tests that users upload). We will also implement a
measure to ensure that the communication with fling servers
is spread out in time. Instead of requiring servers to remember
clients and schedule their access time, we plan to implement a
distributed collision avoidance strategy from sensor networks,

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

60 of 66 Project no. 644334

where communication also happens at regular intervals but
these intervals can differ between clients [15].

fling began with our wish to have more informed discussions
in the Internet Engineering Task Force (IETF): we believe that
it would be fantastic if theories on what middleboxes would
do to certain protocols or header fields could spontaneously
and convincingly be tested by uploading a test description to
a platform, waiting for a few hours and getting a result. This
would require a platform that is as flexible and easy to use
as fling already is, but larger. Having covered the “flexibility
and ease of use” requirement, our immediate next step is
to increase the scale of the platform in accordance with the
plans that we have laid out. The recent creation of the IRTF
Research Group on Measurement and Analysis for Protocols
(MAPRG) shows that the IETF is certainly interested in the
more informed dialogue about middlebox behavior that we
envision.

VI. ACKNOWLEDGEMENTS
This work was partially funded by the European Union’s

Horizon 2020 Research and Innovation Programme through A
New, Evolutive API and Transport-Layer Architecture for the
Internet (NEAT) project under Grant Agreement no. 644334.
The views expressed are solely those of the authors.

REFERENCES

[1] “http://openhip.sourceforge.net.”
[2] “http://packetlife.net.”
[3] “https://redmine.openinfosecfoundation.org.”
[4] “https://wiki.wireshark.org.”
[5] “https://www.samknows.com.”
[6] “http://tcpreplay.appneta.com/.”
[7] “http://www.secdev.org/projects/scapy.”
[8] “http://www.spiceupyourknowledge.net/2012/11/decrypting-esp-packet-

using-wireshark.html.”
[9] V. Bajpai and J. Schönwälder, “A Survey on Internet Performance

Measurement Platforms and Related Standardization Efforts,” IEEE
Communications Surveys & Tutorials, vol. 17, no. 3, 2015.

[10] F. Baker, “Requirements for IP Version 4 Routers,” RFC 1812 (Proposed
Standard), Jun. 1995.

[11] R. Barik, M. Welzl, and A. Elmokashfi, “How to Say That You’Re
Special: Can We Use Bits in the IPv4 Header?” in ANRW ’16, 2016.

[12] S. Bellovin, “The Security Flag in the IPv4 Header,” RFC 3514
(Informational), Internet Engineering Task Force, Apr. 2003.

[13] A. Botta and A. Pescap, “Monitoring and measuring wireless network
performance in the presence of middleboxes,” in WONS 2011, Jan 2011,
pp. 146–149.

[14] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain, “TCP Fast Open,”
RFC 7413 (Experimental), Internet Engineering Task Force, Dec. 2014.

[15] R. L. Cigno, M. Nardelli, and M. Welzl, “SESAM: A semi-synchronous,
energy savvy, application-aware MAC,” in WONS 2009, Feb 2009.

[16] R. Craven, R. Beverly, and M. Allman, “A Middlebox-cooperative TCP
for a Non End-to-end Internet,” in SIGCOMM ’14, 2014, pp. 151–162.

[17] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Donnet,
“Revealing Middlebox Interference with Tracebox,” in IMC ’13. ACM,
2013.

[18] S. Dhesikan, D. Druta, P. Jones, and C. Jennings, “DSCP Packet
Markings for WebRTC QoS,” Internet Engineering Task Force, Internet-
Draft draft-ietf-tsvwg-rtcweb-qos-18, Aug. 2016, Work in Progress.

[19] K. Edeline, M. Kühlewind, B. Trammell, E. Aben, and B. Donnet,
“Using UDP for Internet Transport Evolution,” ETH, Tech. Rep. ETH
TIK Technical Report 366, Dec. 2016.

[20] S. Floyd, M. Allman, A. Jain, and P. Sarolahti, “Quick-Start for TCP
and IP,” RFC 4782 (Experimental), Internet Engineering Task Force,
Jan. 2007. [Online]. Available: http://www.ietf.org/rfc/rfc4782.txt

[21] R. Fonseca, G. M. Porter, R. H. Katz, S. Shenker, I. Stoica, R. Fonseca,
G. Porter, R. H. Katz, S. Shenker, and I. Stoica, “IP options are not
an option,” University of California, Berkeley, Tech. Rep. UCB/EECS-
2005-24, 2005.

[22] S. Hätönen, A. Nyrhinen, L. Eggert, S. Strowes, P. Sarolahti, and
M. Kojo, “An Experimental Study of Home Gateway Characteristics,”
in IMC ’10, 2010.

[23] R. Hay and W. Turkal, “TCP Option to Denote Packet Mood,” RFC
5841 (Informational), Internet Engineering Task Force, Apr. 2010.

[24] M. Honda, “Lessons Learnt from Middlebox Measurement,” in Proceed-
ings of IETF-93, Presentation to HOPS RG, 2015.

[25] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and
H. Tokuda, “Is it still possible to extend TCP?” in IMC ’11. ACM,
2011.

[26] D. Katz, “IP Router Alert Option,” RFC 2113 (Proposed Standard),
Internet Engineering Task Force, Feb. 1997.

[27] S. Kent, “U.S. Department of Defense Security Options for the Internet
Protocol,” RFC 1108 (Historic), IETF, Nov. 1991.

[28] ——, “IP Authentication Header,” RFC 4302 (Proposed Standard),
Internet Engineering Task Force, Dec. 2005.

[29] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Netalyzr: Illumi-
nating the Edge Network,” in IMC ’10, 2010, pp. 246–259.

[30] M. Kühlewind, S. Neuner, and B. Trammell, “On the State of ECN and
TCP Options on the Internet,” in Proceedings of PAM’13, 2013, pp.
135–144.

[31] I. R. Learmonth, B. Trammell, M. Kühlewind, and G. Fairhurst, “PATH-
spider: A Tool for Active Measurement of Path Transparency,” in ANRW
’16, 2016.

[32] A. M. Mandalari, M. Bagnulo, and A. Lutu, “Informing Protocol Design
Through Crowdsourcing: the Case of Pervasive Encryption.” ACM
SIGCOMM Workshop on Crowdsourcing and crowdsharing of Big
(Internet) Data (C2B(I) D), Aug. 2015.

[33] S. McQuistin and C. S. Perkins, “Is Explicit Congestion Notification
Usable with UDP?” in IMC ’15. ACM, 2015, pp. 63–69.

[34] A. Medina, M. Allman, and S. Floyd, “Measuring Interactions Between
Transport Protocols and Middleboxes,” in IMC ’04, 2004, pp. 336–341.

[35] ——, “Measuring the Evolution of Transport Protocols in the Internet,”
SIGCOMM Comput. Commun. Rev., vol. 35, no. 2, pp. 37–52, Apr. 2005.

[36] R. Moskowitz, T. Heer, P. Jokela, and T. Henderson, “Host Identity
Protocol Version 2 (HIPv2),” RFC 7401 (Proposed Standard), Internet
Engineering Task Force, Apr. 2015.

[37] A. Müller, F. Wohlfart, and G. Carle, “Analysis and Topology-based
Traversal of Cascaded Large Scale NATs,” in HotMiddlebox ’13, 2013.

[38] J. Padhye and S. Floyd, “Identifying the TCP Behavior of Web Servers,”
in In ACM SIGCOMM, 2000.

[39] J. Pahdye and S. Floyd, “On Inferring TCP Behavior,” in SIGCOMM
’01, 2001.

[40] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley, “How Hard Can It Be? Designing
and Implementing a Deployable Multipath TCP,” in USENIX NSDI’12,
2012, pp. 29–29.

[41] P. Srisuresh, B. Ford, S. Sivakumar, and S. Guha, “NAT Behavioral
Requirements for ICMP,” RFC 5508 (Best Current Practice), Internet
Engineering Task Force, Apr. 2009.

[42] P. Srisuresh and M. Holdrege, “IP Network Address Translator (NAT)
Terminology and Considerations,” RFC 2663 (Informational), Internet
Engineering Task Force, Aug. 1999.

[43] R. N. Staff, “RIPE Atlas: A Global Internet Measurement Network,”
Internet Protocol Journal, vol. 18, no. 3, Sep. 2015.

[44] S. Sundaresan, S. Burnett, N. Feamster, and W. de Donato, “BISmark:
A Testbed for Deploying Measurements and Applications in Broadband
Access Networks,” in USENIX ATC 14), Jun. 2014, pp. 383–394.

[45] B. Trammell and M. Kühlewind, “Observing Internet Path Transparency
to Support Protocol Engineering,” in Proceedings of IRTF/ISOC RAIM
Workshop, Oct 2015.

[46] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang, “An Untold Story of
Middleboxes in Cellular Networks,” in SIGCOMM ’11, 2011.

[47] N. Weaver, C. Kreibich, M. Dam, and V. Paxson, “Here Be Web
Proxies,” in Proceedings of PAM ’14, 2014.

[48] X. Xu, Y. Jiang, T. Flach, E. Katz-Bassett, D. Choffnes, and R. Govin-
dan, “Investigating Transparent Web Proxies in Cellular Networks,” in
PAM ’15, 2015.

[49] Y. Zhuang, A. Rafetseder, and J. Cappos, “Experience with Seattle:
A Community Platform for Research and Education,” in 2013 Second
GENI Research and Educational Experiment Workshop, March 2013,
pp. 37–44.

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

61 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

E Paper: How to say that you’re special: Can we use bits in the IPv4

header?

The following research paper [11] has been produced by project participants.

62 of 66 Project no. 644334

How to say that you’re special:
Can we use bits in the IPv4 header?

Runa Barik, Michael Welzl
University of Oslo, Norway

Ahmed Elmokashfi
Simula Research Laboratory, Norway

ABSTRACT
The IP header should be the ideal part of a packet that an end sys-
tem could use to ask the network for special treatment. Recently,
there has been renewed interest in using bits of this header – e.g.
the ECN and the DSCP fields. But can we really use these bits? Or
should we try to use other bits? We contribute to the body of work
that tries to answer these questions by reporting on IPv4 measure-
ments regarding the DSCP field and the Evil bit. Our findings show
unexpected treatment to packets that set either of these fields and
also confirm recent results on IP Options and ECN.

CCS Concepts
•Networks→ Network measurement; Middle boxes / network
appliances; Public Internet;

Keywords
Middleboxes, Measurements, IPv4, DSCP, TCP

1. INTRODUCTION
The current Internet is full of middleboxes – devices that per-

forming functions “other than the normal, standard functions of an
IP router on the datagram path between a source host and destina-
tion host” [3]. For instance, a recent study [16] analyzing 57 en-
terprise networks revealed that they contain as many middleboxes
as routers. The authors of [19] found that 82 out of 107 cellular
networks have NAT devices. Measuring what these middleboxes
do to packets has been a matter of much recent interest, and it is
important, e.g. when designing protocol extensions in the IETF
(e.g., [10] had an impact on the design of MPTCP).

However, in-band (per-packet) signaling from end systems to the
network should ideally be done in the IP header – the part of the
packet that any intermediate device, be it a middlebox or a regular
router, should be able to analyze and modify. Recent IETF pro-
posals utilize the bits of this header for such purposes – e.g. [5]
defines how web browsers should directly set DiffServ Code Point
(DSCP) in order to obtain a more suitable service for packets. An-
other example is the ECN field, which has been overloaded for var-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ANRW ’16, July 16 2016, Berlin, Germany
c© 2016 ACM. ISBN 978-1-4503-4443-2/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2959424.2959442

ious purposes (e.g. PCN [6] and ConEx [14]) – recently, it has been
suggested to segregate traffic into two different queues depending
on the value of this field [2]. The potential difficulty of using the
IP header for signaling has also fueled work on other means for in-
band signaling between end systems and network, e.g. SPUD [18].

Addressing this need, we present some measurement results that
focus on IPv4 header fields, specifically the DSCP and the “Re-
served” bit in the IP header – commonly, and in the following,
called the “Evil bit” ([1], April 1). While directly setting the DSCP
is now being proposed for WebRTC, the Evil bit may also become
an opportunity for usage when we run out of available bits.

Our measurements, for which we asked private contacts to run
a tool to communicate over raw sockets with our servers, point at
some unexpected behavior regarding both DSCP (which can cause
packet drops) and Evil bit (which works better end-to-end than
the tested DSCP values). Our measurements also roughly confirm
some previously published results regarding ECN and IP Options,
and show a positive result regarding (mis-)use of Identification (ID)
field as a side effect. We elaborate more on this in Sec. 4

2. TEST DESIGN
We implemented a tool based on scapy and Python httplib; the

tool has both client and server side components. The tool executes
a pre-specified exchange pattern between the client and the server.
For each test, we prepared a packet trace and uploaded it to both the
client and the server along with a description of how to exchange
these packets. This flexibility allows testing different combinations
of flags and options in the IP header.

In May 2016, we carried out a total of 1807 TCP SYN-SYN/ACK
handshakes across 185 paths (IP address pairs), using various com-
binations of IP header flags and IP options. For some tests (e.g.
ECN), the handshake was succeeded by an HTTP GET request,
followed by an ACK. 35 people in 9 different countries Australia,
Austria, Bangladesh, Germany, Norway, Spain, Sweden, Switzer-
land and United Kingdom installed and ran our scapy-based tool,
which carried out several protocol dialogues over raw sockets with
our 3 servers (15 hosts only communicated with 2 servers because
the test was interrupted). Answering a query from our tool, about
two thirds of the users stated that they ran the tests from their
homes. One of our servers was based in Oregon (USA), the other
two were based in Norway. We intend to do broader tests in the fu-
ture, including differentiation between mobile and fixed networks.

To minimize the chance that congestion-based drops make us be-
lieve in a failure to communicate when using certain values in the
IP header, we re-tried failed packet exchanges up to three times,
and we sent an ICMP packet just ahead of every measurement
packet. We only assumed a communication failure when the test
failed three times and the ICMP packet succeeded.

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

63 of 66 Project no. 644334

10
-3

10
-2

10
-1

10
0

10

0 8 36 46

(0: 98),(2: 5)
(6: 17)

(8: 5)
(46: 41)

(0: 97),(2: 7)
(4: 14),(8: 5)
(34: 2)
(36: 39)

(0: 112)
(2: 5)
(8: 45)

(0: 170)
(2: 5)
(8: 5)
(32: 5)

F
ra

c
ti
o
n
 o

f
d
is

ti
n
c
t
p
a
th

s

DSCP values

0000 2222 8888 3
2

3
2

3
2

3
2

0000 2222 8888 0000 2222 4444 8888 3
4

3
4

3
4

3
4

3
6

3
6

3
6

3
6

0000 2222 6666 8888 4
6

4
6

4
6

4
6

Figure 1: DSCP value changes. x-axis: the lower (larger) number is the
DSCP value that our senders used, the upper (smaller) number is the value
that arrived at receivers. The brackets on the top show the absolute number
of paths (IP address pairs) along which the change happened.

3. RESULTS
Since our DSCP evaluation was motivated by the WebRTC QoS

proposal [5], we used this Internet-draft to guide our tests and will
discuss our results in its context. Considering table 1 in [5], we as-
sumed the flow type “Interactive Video with or without Audio” with
application priorities “Very low” (DSCP value CS1 (8)), “Low”
(DF (0)) or “Medium” (AF42 (36)), and flow type “Audio” with
application prioritiy “High” (EF PHB (46)).

Figure 1 shows the DSCP value changes that we saw. The most
expected behavior is that DSCP values pass unchanged or are ze-
roed. Our results confirm this expectation, as the number of paths
where packets were received with their original value (0, 8, 36 or
46) or set to 0 was always largest (and, irrespective of the input
value, receiving DSCP=0 seems to be the most common behavior
by far). We did, however, see consistent packet drops too: on 23
paths for DSCP value 8, 21 paths for 36, 19 for 46. This failure rate
of approximately 10 - 13% is a reason to be concerned about We-
bRTC QoS; implementations should probably react to consistent
failures with a fall-back to DSCP value 0.

On five paths, any DSCP value was changed to 8 – “Very low”
in accordance with the table in [5]. Another value that occurred ir-
respective of the input value was 2, which is undefined [11]. Given
the small number of paths, there may only have been a single or a
handful of devices that produced these values. Much more interest-
ingly, however, certain DSCP values appeared only when the sender
applied a nonzero DSCP value. Marking packets as AF42 (36) pro-
voked another undefined value (4) on 14 paths, but also AF41 (34),
giving it a lower drop precedence and thereby potentially improv-
ing the service. Value 46 (EF PHB), on the other hand, was turned
into 6 – yet another undefined value – on 17 paths.

Using the Evil bit provoked consistent packet loss on 11% of
all 185 distinct paths – the same approximate range as the DSCP
values. Among the successful tests, we observed that the Evil bit
was zeroed on 4% of all paths (6 out of 164). This number is much
lower than for the DSCP, which was zeroed in 62% of all cases (307
in the total 492 tests of distinct paths per DSCP value, for values 8,
36 and 46). This is perhaps expected, given that the Evil bit has so
far been undefined, but it also means that it probably has a better
chance to “survive” along a path than the tested DSCP values.

To better understand whether this zeroing and the DSCP value
changes (to defined values, which are more interesting because they
should also have a defined effect on packets) were done by the same
devices, we examined the geographical location of source and des-
tination IP addresses. Table 1 shows that, e.g., the AF42-AF41
change happened for two different source/destination IP addresses
pairs between Switzerland and Oregon, USA, and nowhere else, in-
dicating that there was probably only one device in Switzerland that
made this change. Similarly, all the changes to CS1 (8) happened
on paths to Austria, indicating that there might only have been a

Table 1: DSCP and Evil bit changes by source / destination countries

DSCP Change {# of paths} Src. Countries Dst. Countries

DF (0) -> CS1 (8) {5}
AF42 (36) -> CS1 (8) {5}
EF -> CS1 (8) {5}

Norway (ISP1);
Norway (ISP2);
Oregon, USA

Austria

AF42 (36) -> AF41 (34) {2} Switzerland Oregon, USA
CS1 -> DF (0) {112}
AF42 (36) -> DF (0) {97}
EF (46) -> DF (0) {98}

Many Many

Evil bit cleared {3}
ISP1;ISP2;

Oregon, USA Switzerland

Evil bit cleared {3} Switzerland
ISP1;ISP2;

Oregon, USA

single device in Austria that made this change.

4. DISCUSSION AND CONCLUSION
Our measurements have shown some interesting behavior re-

garding the DSCP and the Evil bit. Perhaps the most important
take-away is that using a nonzero DSCP value can provoke consis-
tent packet drops, and hence opportunistically using them as sug-
gested in [5] should come with a fall-back to DSCP 0 in case con-
sistent packet loss is seen. It was also interesting to see that using
a nonzero DSCP value can provoke different DSCP value changes
than using DSCP 0, potentially leading to different behavior than
expected, but also indicating that the DSCP value is indeed under-
stood and reacted upon by the routers in the network.

As for the Evil bit, setting it caused approximately the same
amount of consistent packet loss as with the various DSCP values
that we tried, but the bit value seemed to have a much better chance
to be correctly transmitted across a path. This can indicate that the
Evil bit is a better option than the DSCP value for definitions of
new behavior (e.g. the proposal in [20]).

There are several other bits and fields in the IP header that de-
serve a closer look. In particular, the ECN field has been the subject
of many investigations (cf. [13] and references therein), and IP Op-
tions have also been investigated to some extent (cf. [9, 15]). Our
measurements roughly confirm previous findings regarding IP Op-
tions: we repeated the tests from [9] but also added the Quick-Start
Request [8] and Router Alert [12] IP options, and saw less than 6%
of successful tests on distinct paths. For ECN, we repeated a test
from [15], which involved sending an HTTP GET request that had
the ECN field set to 11 after a successful TCP+ECN handshake.
We ended up submitting 108 such GET requests, out of which 91
successfully reached the other side on 69 different paths, i.e. the
ECN field being set to 11 caused a drop rate of around 16%.

Contradicting its “allowed” usage [17], our tool used ID field to
enumerate and identify packets of a test (we needed this for other
measurements that we carried out in the same campaign). This
means that we would categorize both a change of ID field or a drop
of the packet as a packet drop in our tests. However, only one out of
our 35 total test sources was entirely unable to communicate except
for HTTPS signaling, which either points at an extremely restrictive
middlebox behavior or failure to forward packets with an ID field
value other than 0. Unless routers or middleboxes react to this field
differently depending on other fields of the packet, this indicates a
very large success rate when trying to send a value in the ID field
across the Internet (3599 packets on 185 distinct paths), confirming
a finding in [7].

Next, we plan to extend our tool with functionality similar to
tracebox [4] such that we can learn the IP addresses of devices that
caused packet drops or header changes, and give a better indication
of the number of distinct devices that caused a certain behavior.

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

64 of 66 Project no. 644334

5. ACKNOWLEDGEMENTS
This work was partially funded by the European Union’s Hori-

zon 2020 Research and Innovation Programme through A New,
Evolutive API and Transport-Layer Architecture for the Internet
(NEAT) project under Grant Agreement no. 644334. The views
expressed are solely those of the authors.

6. REFERENCES
[1] S. Bellovin. The Security Flag in the IPv4 Header. RFC 3514

(Informational), Apr. 2003.
[2] B. Briscoe, K. D. Schepper, and I. J. Tsang. Identifying

Modified Explicit Congestion Notification (ECN) Semantics
for Ultra-Low Queuing Delay. Internet-Draft
draft-briscoe-tsvwg-ecn-l4s-id-01, Internet Engineering Task
Force, Mar. 2016. Work in Progress.

[3] B. Carpenter and S. Brim. Middleboxes: Taxonomy and
Issues. RFC 3234 (Informational), Feb. 2002.

[4] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and
B. Donnet. Revealing middlebox interference with tracebox.
In Proceedings of the 2013 Conference on Internet
Measurement Conference, IMC ’13, pages 1–8, New York,
NY, USA, 2013. ACM.

[5] S. Dhesikan, D. Druta, P. Jones, and C. Jennings. DSCP
Packet Markings for WebRTC QoS. Internet-Draft
draft-ietf-tsvwg-rtcweb-qos-17, Internet Engineering Task
Force, May 2016. Work in Progress.

[6] P. Eardley. Pre-Congestion Notification (PCN) Architecture.
RFC 5559 (Informational), June 2009.

[7] K. Edeline and B. Donnet. Towards a middlebox policy
taxonomy: Path impairments. In 2015 IEEE Conference on
Computer Communications Workshops (INFOCOM
WKSHPS), pages 402–407, April 2015.

[8] S. Floyd, M. Allman, A. Jain, and P. Sarolahti. Quick-Start for
TCP and IP. RFC 4782 (Experimental), Jan. 2007.

[9] R. Fonseca, G. M. Porter, R. H. Katz, S. Shenker, and
I. Stoica. IP options are not an option. Technical report, EECS
Department, University of California, Berkeley, 2005.

[10] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh,
M. Handley, and H. Tokuda. Is it still possible to extend TCP?
In Proceedings of the 2011 ACM SIGCOMM conference on

Internet measurement conference, IMC ’11, pages 181–194,
New York, NY, USA, 2011. ACM.

[11] Differentiated Services Field Codepoints (DSCP).
http://www.iana.org/assignments/dscp-registry.

[12] D. Katz. IP Router Alert Option. RFC 2113 (Proposed
Standard), Feb. 1997. Updated by RFCs 5350, 6398.

[13] M. Kühlewind, S. Neuner, and B. Trammell. On the State of
ECN and TCP Options on the Internet. In Proceedings of the
14th International Conference on Passive and Active
Measurement, PAM’13, pages 135–144, Berlin, Heidelberg,
2013. Springer-Verlag.

[14] M. Mathis and B. Briscoe. Congestion Exposure (ConEx)
Concepts, Abstract Mechanism, and Requirements. RFC 7713
(Informational), Dec. 2015.

[15] J. Pahdye and S. Floyd. On inferring TCP behavior. In
Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications, SIGCOMM ’01, pages 287–298, New York,
NY, USA, 2001. ACM.

[16] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,
S. Ratnasamy, and V. Sekar. Making middleboxes someone
else’s problem: Network processing as a cloud service. In
Proceedings of the ACM SIGCOMM 2012 Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’12, pages 13–24,
New York, NY, USA, 2012. ACM.

[17] J. Touch. Updated Specification of the IPv4 ID Field. RFC
6864 (Proposed Standard), Feb. 2013.

[18] B. Trammell and M. Kühlewind. Requirements for the
design of a Substrate Protocol for User Datagrams (SPUD).
Internet-Draft draft-trammell-spud-req-04, Internet
Engineering Task Force, May 2016. Work in Progress.

[19] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang. An untold
story of middleboxes in cellular networks. In Proceedings of
the ACM SIGCOMM 2011 Conference, SIGCOMM ’11,
pages 374–385, New York, NY, USA, 2011. ACM.

[20] J. You, M. Welzl, B. Trammell, M. KÂÿhlewind, and
K. Smith. Latency Loss Tradeoff PHB Group. Internet-Draft
draft-you-tsvwg-latency-loss-tradeoff-00, Internet
Engineering Task Force, Mar. 2016. Work in Progress.

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

65 of 66 Project no. 644334

D4.2
Final version of NEAT-based tools

Public
Rev. 1.0/ August 31, 2017

Disclaimer

The views expressed in this document are solely those of the author(s). The European Com-

mission is not responsible for any use that may be made of the information it contains.

All information in this document is provided “as is”, and no guarantee or warranty is given

that the information is fit for any particular purpose. The user thereof uses the information

at its sole risk and liability.

66 of 66 Project no. 644334

	List of Abbreviations
	Introduction
	NEAT-based tools
	Summary of tools
	Measurement and traffic generation tools
	phttpget
	thttpd
	NEAT web server
	Middlebox measurement tools
	tneat
	pReplay
	Nghttp2
	Multi-homed TCP-based download manager

	Diagnostics tools
	Buildbots
	Logging
	Policy Manager Diagnostics
	System-wide NEAT statistics (neatstat)

	 Test plan
	Core library testing
	Test strategy
	Test environment
	Test procedures

	Consortium testbeds
	MONROE
	INFINITE

	Use case testing
	Mozilla use case
	Cisco use case
	Celerway use case
	EMC use case

	Conclusions
	References
	NEAT Terminology
	Example JSON file for a fling test
	How to build and test NEAT applications in MONROE
	Creating NEAT-enabled MONROE experiments
	MONROE metadata, Policy Manager and CIB

	Paper: fling: A Flexible Ping for Middlebox Measurements
	Paper: How to say that you're special: Can we use bits in the IPv4 header?

