
NEAT
A New, Evolutive API and Transport-Layer Architecture for the Internet

H2020-ICT-05-2014
Project number: 644334

Deliverable D2.3
Final Version of Core Transport System

Editor(s): Naeem Khademi
Contributor(s): Zdravko Bozakov, Anna Brunstrom, Øystein Dale, Dragana Damjanovic,

Kristian Riktor Evensen, Gorry Fairhurst, Andreas Fischer, Karl-Johan Grinnemo,
Tom Jones, Simone Mangiante, Andreas Petlund, David Ros, Irene Rüngeler,
Daniel Stenberg, Michael Tüxen, Felix Weinrank and Michael Welzl

Work Package: 2 / Core Transport System
Revision: 1.0
Date: August 31, 2017
Deliverable type: R (Report)
Dissemination level: Public

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

Abstract

This document presents the core transport system in NEAT, as used for development of the

reference implementation of the NEAT System. The document describes the components

necessary to realise the basic Transport Services provided by the NEAT User API, with the

description of a set of NEAT building blocks and their related design choices. The design

of this core transport system, which is the final product of Work Package 2, is driven by the

Transport Services and API design from Task 1.4, and in close coordination with the overall

NEAT architecture defined in Task 1.2.

To realise the Transport Services provided by the API, a set of transport functions has to

be provided by the NEAT Core Transport System. These functions take the form of several

building blocks, or NEAT Components, each representing an associated implementation

activity. Some components are needed to ensure the basic operation of the NEAT System—

e.g., a NEAT Flow Endpoint, a callback-based NEAT API Framework, the NEAT Logic and

the functionality to Connect to a name. Additional components are needed for: (a) en-

suring connectivity, by means of mechanisms for discovery of path support for different

protocols; (b) supporting end-to-end security; (c) the ability to apply different policies to

influence the decision-making process of the transport system; (d) providing other impor-

tant functionalities (e.g., a user-space SCTP stack, or gathering statistics for users or system

administrators).

This document updates Deliverable D2.2; in particular, the descriptions of NEAT com-

ponents presented here correspond to their implementation status by the end of WP2, and

as such they supersede those in D2.2.

Participant organisation name Short name

Simula Research Laboratory AS (Coordinator) SRL

Celerway Communication AS Celerway

EMC Information Systems International EMC

MZ Denmark APS Mozilla

Karlstads Universitet KaU

Fachhochschule Münster FHM

The University Court of the University of Aberdeen UoA

Universitetet i Oslo UiO

Cisco Systems France SARL Cisco

2 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

Contents

List of Abbreviations 6

1 Introduction 10

1.1 Overview of the NEAT Architecture . 10

1.2 Overview of the services provided by the NEAT User API 12

1.3 Overview of the components required to provide the services 12

1.4 Overview of component interaction during connection setup 14

1.5 Overview of connection tear down . 17

2 Coding with the NEAT User API 17

2.1 NEAT User API Tutorial . 18

2.1.1 What is NEAT? . 18

2.1.2 Contexts and Flows . 18

2.1.3 Properties . 19

2.1.4 Asynchronous API . 19

2.1.5 A minimal server . 19

2.1.6 A minimal client . 23

2.1.7 Tying the client and server together . 25

2.2 Summary of the benefits of coding with the NEAT User API 26

2.3 Python bindings for the NEAT User API . 29

2.3.1 Motivation for NEAT Python bindings . 29

2.3.2 Using SWIG as solution approach . 30

2.3.3 Challenges and result: NEAT communication between C and Python 31

2.3.4 Summary . 33

3 Core Transport Functions 33

3.1 NEAT Framework Components . 33

3.1.1 NEAT Flow Endpoint . 34

3.1.2 NEAT API Framework (callback) . 39

3.1.3 NEAT Logic . 44

3.1.4 Connect to a name . 46

3.1.5 NEAT Flow Endpoint Statistics . 48

3.2 NEAT Transport Components . 51

3.2.1 NEAT-integrated SCTP user-space stack . 51

3.2.2 Middlebox Traversal . 53

3.2.3 Local flow priority . 56

3.2.4 Security . 59

3.3 NEAT Selection Components . 61

3.3.1 Happy Eyeballs . 62

3.3.2 Happy Apps (application-level feedback mechanisms) 64

3.4 NEAT Policy Components . 67

3.4.1 NEAT Policy Manager . 68

3.4.2 Policy Information Base (PIB) . 73

3.4.3 Characteristics Information Base (CIB) . 76

3 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

4 NEAT reference material 80

4.1 NEAT tutorial . 80

4.2 Additional online documentation . 81

4.3 Virtual machines . 81

5 Conclusions 81

References 86

A NEAT Terminology 87

B NEAT API Reference 89

B.1 Optional arguments . 89

B.1.1 Specifying no optional arguments . 89

B.1.2 Optional argument macros . 89

B.1.3 Optional argument tags . 90

B.2 Properties . 91

B.2.1 Application property reference . 91

B.2.2 Inferred properties . 92

B.3 Callbacks . 93

B.3.1 Example callback flow . 94

B.3.2 Callback reference . 94

B.4 Error codes . 95

B.5 API functions . 96

B.5.1 neat_init_ctx . 96

B.5.2 neat_free_ctx . 96

B.5.3 neat_new_flow . 96

B.5.4 neat_set_property . 97

B.5.5 neat_get_property . 97

B.5.6 neat_open . 98

B.5.7 neat_accept . 99

B.5.8 neat_read . 100

B.5.9 neat_write . 101

B.5.10 neat_shutdown . 101

B.5.11 neat_close . 102

B.5.12 neat_abort . 102

B.5.13 neat_set_operations . 103

B.5.14 neat_change_timeout . 104

B.5.15 neat_set_primary_dest . 104

B.5.16 neat_secure_identity . 105

B.5.17 neat_set_checksum_coverage . 105

B.5.18 neat_set_qos . 106

B.5.19 neat_set_ecn . 106

B.5.20 neat_start_event_loop . 107

B.5.21 neat_stop_event_loop . 107

B.5.22 neat_get_backend_fd . 108

4 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

B.5.23 neat_get_backend_timeout . 108

B.5.24 neat_get_event_loop . 108

B.5.25 neat_get_stats . 109

B.5.26 neat_getlpaddrs . 109

B.5.27 neat_log_level . 110

B.5.28 neat_log_file . 110

C Main changes with respect to Deliverable D2.2 112

D Paper: NEAT: A Platform- and Protocol-Independent Internet Transport API 113

E Paper: On the Cost of Using Happy Eyeballs for Transport Protocol Selection 123

5 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

List of abbreviations

AAA Authentication, Authorisation and Accounting

AAAA Authentication, Authorisation, Accounting and Auditing

API Application Programming Interface

BE Best Effort

BLEST Blocking Estimation-based MPTCP

CC Congestion Control

CCC Coupled Congestion Controller

CDG CAIA Delay Gradient

CIB Characteristics Information Base

CM Congestion Manager

DA-LBE Deadline Aware Less than Best Effort

DAPS Delay-Aware Packet Scheduling

DCCP Datagram Congestion Control Protocol

DNS Domain Name System

DNSSEC Domain Name System Security Extensions

DPI Deep Packet Inspection

DSCP Differentiated Services Code Point

DTLS Datagram Transport Layer Security

ECMP Equal Cost Multi-Path

EFCM Ensemble Flow Congestion Manager

ECN Explicit Congestion Notification

ENUM Electronic Telephone Number Mapping

E-TCP Ensemble-TCP

FEC Forward Error Correction

FLOWER Fuzzy Lower than Best Effort

FSE Flow State Exchange

FSN Fragments Sequence Number

GUE Generic UDP Encapsulation

H1 HTTP/1

6 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

H2 HTTP/2

HE Happy Eyeballs

HoLB Head of Line Blocking

HTTP HyperText Transfer Protocol

IAB Internet Architecture Board

ICE Internet Connectivity Establishment

ICMP Internet Control Message Protocol

IETF Internet Engineering Task Force

IF Interface

IGD-PCP Internet Gateway Device – Port Control Protocol

IoT Internet of Things

IP Internet Protocol

IRTF Internet Research Task Force

IW Initial Window

IW10 Initial Window of 10 segments

JSON JavaScript Object Notation

KPI Kernel Programming Interface

LAG Link Aggregation

LAN Local Area Network

LBE Less than Best Effort

LEDBAT Low Extra Delay Background Transport

LRF Lowest RTT First

MBC Model Based Control

MID Message Identifier

MIF Multiple Interfaces

MPTCP Multipath Transmission Control Protocol

MPT-BM Multipath Transport-Bufferbloat Mitigation

MTU Maximum Transmission Unit

NAT Network Address (and Port) Translation

NEAT New, Evolutive API and Transport-Layer Architecture

7 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

NIC Network Interface Card

NUM Network Utility Maximization

OF OpenFlow

OS Operating System

OTIAS Out-of-order Transmission for In-order Arrival Scheduling

OVSDB Open vSwitch Database

PCP Port Control Protocol

PDU Protocol Data Unit

PHB Per-Hop Behaviour

PI Policy Interface

PIB Policy Information Base

PID Proportional-Integral-Differential

PLUS Path Layer UDP Substrate

PM Policy Manager

PMTU Path MTU

POSIX Portable Operating System Interface

PPID Payload Protocol Identifier

PRR Proportional Rate Reduction

PvD Provisioning Domain

QoS Quality of Service

QUIC Quick UDP Internet Connections

RACK Recent Acknowledgement

RFC Request for Comments

RTT Round Trip Time

RTP Real-time Protocol

RTSP Real-time Streaming Protocol

SCTP Stream Control Transmission Protocol

SCTP-CMT Stream Control Transmission Protocol – Concurrent Multipath Transport

SCTP-PF Stream Control Transmission Protocol – Potentially Failed

SCTP-PR Stream Control Transmission Protocol – Partial Reliability

8 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

SDN Software-Defined Networking

SDT Secure Datagram Transport

SIMD Single Instruction Multiple Data

SPUD Session Protocol for User Datagrams

SRTT Smoothed RTT

STTF Shortest Transfer Time First

SDP Session Description Protocol

SIP Session Initiation Protocol

SLA Service Level Agreement

SPUD Session Protocol for User Datagrams

STUN Simple Traversal of UDP through NATs

TCB Transmission Control Block

TCP Transmission Control Protocol

TCPINC TCP Increased Security

TLS Transport Layer Security

TSN Transmission Sequence Number

TTL Time to Live

TURN Traversal Using Relays around NAT

UDP User Datagram Protocol

UPnP Universal Plug and Play

URI Uniform Resource Identifier

VoIP Voice over IP

VM Virtual Machine

VPN Virtual Private Network

WAN Wide Area Network

WWAN Wireless Wide Area Network

9 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

1 Introduction

The NEAT System aims to change the transport layer interface in a way that Internet applications

may specify and select a variety of Transport Services, instead of specifying a transport protocol. The

Transport Services provided by the NEAT System and the API needed to achieve this goal are out-

lined in Deliverable D1.3 [41]. The NEAT Core Transport System plays a vital role in translating those

Transport Services exposed by the NEAT User API into protocol-level function calls, as well as sup-

porting a variety of transport-layer mechanisms that provide such Transport Services1. We denote as

Core Transport System the set of building blocks necessary to provide the NEAT Transport Services

described in Deliverable D1.3. These building blocks include mechanisms for ensuring end-to-end

connectivity, discovery of path support for protocol(s) chosen by the NEAT System, end-to-end secu-

rity, ability to select different system policies depending on the application or network scenarios, and

the ability to expose connection-level or system-wide statistics to an application. It also includes the

support for necessary transport protocols in user-space (e.g., SCTP support by usrsctp), and essential

functionalities for using multi-streaming and multi-homing.

This document is an update to D2.2 [30] and reports the core transport system implemented in

NEAT, which we term the NEAT Library, by the end of Work Package 2. The rest of this section provides

a short overview of the NEAT architecture introduced in Deliverable D1.1 [20] (§ 1.1). It also discusses

the Transport Services provided by NEAT (§ 1.2). Then, it briefly presents the building blocks, or NEAT

Components, that comprise the NEAT core transport system (§ 1.3) and how they interact during a

connection setup attempt (§ 1.4). Finally, connection closing is explained (§ 1.5).

Section 2 describes how applications can be built to use the NEAT User API. The section provides

a tutorial on how to use the NEAT User API along with a simple client/server example using the NEAT

library, and summarises some benefits of NEAT for application developers when compared with the

traditional socket API. The section closes by presenting the Python bindings for NEAT that have been

developed by the project during the last phase of WP2. Section 3 discusses each of the NEAT com-

ponents in detail, identifies the Transport Services they provide as well as their dependency on other

components in the NEAT System, and provides examples of operation. Section 4 provides references

to related documentation and code examples. Then, Section 5 draws conclusions from this document

representing the final work done in Work Package 2.

To close the document, Appendix B provides a detailed reference of the NEAT User API. Appendix C

lists the main differences between D2.2 and D2.3. The paper attached in Appendix D [29] summarises

some of the topics dealt with in this document, in particular the benefits offered by NEAT in different

contexts, and also discusses the relation between NEAT and Internet standards activities. Finally, Ap-

pendix E contains a paper [33] with our performance evaluation results of the Happy Eyeballs mecha-

nism used by NEAT (§ 3.3.1).

1.1 Overview of the NEAT Architecture

The NEAT architecture has been described in detail in Deliverable D1.1. In this section we provide a

summary of such description in order to put our implementation work into context. The NEAT System

is a layered architecture that provides a flexible and evolvable transport system. The applications and

middleware served by the NEAT System utilise a new NEAT User API that abstracts network transport.

The NEAT System can provide Transport Services in a way that allows the best transport protocol to be

1For more details about NEAT-specific terminology, please refer to Appendix A.

10 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

Traditional Socket NEAT Socket

NEAT User API

USER

KERNEL KPI

NEAT
Framework

Components

NEAT
Selection

Components
NEAT Policy
Components

NEAT
Transport

Components

NEAT Signalling
and Handover
Components

Di
ag

no
st

ic
s

an
d

St
at

is
tic

s

Policy Interface

Figure 1: Component groups and interfaces used to realise the NEAT User Module.

TCP UDP SCTP

APP Class 0 APP Class 1 APP Class 2 APP Class 3

TCP Minion Experimental
Mechanisms

Traditional Socket NEAT Socket

Middleware

NEAT Framework

NEAT User API

NEAT APP Support
API

NEAT
Policy

ManagerUSER

KERNEL

Policy
Information

Base

Characteristic
Information

Base

Policy Interface

SCTP/UDP

APP Class 4

PCAP RAW IP Experimental
Mechanisms

KPI

Selection
Components

H and S
Components

NEAT APP Support
Module

IP

DIAG &
STATS

NEAT Kernel
Module

Policy Interface

Transport
Components

SCTP/
UDP

SPUD/
UDP…

Userspace Transport
Exp

Mech

Figure 2: Components and interfaces to the NEAT System. The NEAT User Module is composed of all
the blocks shown in light blue (NEAT Framework, NEAT Transport, NEAT Selection, NEAT Signalling
and Handover, and Policy Components) and related APIs (NEAT User API, Policy Interface, Diagnostics
and Statistics Interface).

used by an application without the application having to handle selection from application code.

The main part of the NEAT System is the NEAT User Module, depicted in Figure 1. It provides

the set of components necessary to realise a Transport Service provided by the NEAT System. It is

implemented in user-space and is intended to be portable across a wide range of platforms.

Figure 2 provides a more detailed overview of the different parts of the NEAT System and its inter-

faces. Applications access the NEAT System via a NEAT User API and its associated interfaces. The

NEAT User API offers Transport Services similar to those offered by the socket API, but using an event-

driven style of interaction. The NEAT User API provides the necessary information to allow the NEAT

System to select an appropriate Transport Service.

The NEAT User API provides the interface to the NEAT User Module. This API and its associated

Diagnostics and Statistics Interface are formally one part of a group of components that comprise the

NEAT Framework. Other components in this group are responsible for the most basic functions of the

NEAT User Module.

11 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

A group of components are responsible for the Selection of the Transport Service, these use the

services of the NEAT Policy Manager, which provides high-level components that inform selection

and enforce policy for decisions. The policy information is combined with the information passed

via the NEAT User API and can be updated in this architecture by probing/signalling mechanisms to

complete selection of the protocols and mechanisms needed to realise the required Transport Service.

The components required to configure and manage the Transport Service are also part of the NEAT

User Module. Some protocols (such as TCP and UDP) are typically provided by the kernel of the plat-

form OS. Other transport protocols are provided in user-space, but may optionally also be provided by

the kernel. A key goal of the NEAT System is to offer Transport Services in the same way regardless of

how the transport protocols have been implemented or how they are offered by the network stack. The

NEAT User Module can utilise optional signalling components, implemented in the NEAT Signalling

and Handover components.

The NEAT System can evolve to incorporate new and experimental transports. It allows applica-

tions to take advantage of new functionality as it becomes available across the Internet and will fall

back and emulate features required by applications when other alternatives are not available.

The Kernel interfaces and experimental mechanisms, highlighted in Figure 2 in dark blue and

green respectively, are optional components of the NEAT System.

The layered design of the NEAT System enables it to offer optimised transports to applications that

would normally have to supply compatibility layers or the entire transport as a library.

1.2 Overview of the services provided by the NEAT User API

IETF documents from the TAPS working group [19, 39], co-authored by NEAT participants, define a

Transport Service as an end-to-end service provided to an application by the transport layer, and a

Transport Service Feature as a specific end-to-end feature that a Transport Service provides to its users.

Deliverable D1.2 [40] presents two sets of Transport Service Features: (a) Features derived from

draft-ietf-taps-transports-usage [39]; and (b) Features derived from use cases in D1.1 [20]. Set (a)

includes Transport Service Features that can be utilised using primitives and events derived from

transport-protocol APIs. This includes TCP, MPTCP, SCTP, UDP and UDP-Lite protocols. Set (b) in-

cludes Transport Service Features that stem from application requirements of the use cases in D1.1

and are composed of two groups: (1) Features that require immediate action from the application;

and (2) Features that require immediate action (or feedback) from NEAT.

Deliverable D1.3 [41], an update to D1.2, distilled and simplified further the abstract API of NEAT

and the services it supports. The core transport system in NEAT is the minimal set of components

necessary to implement such services. We summarise these components next and provide a more

elaborate description in Section 3.

1.3 Overview of the components required to provide the services

To offer the Transport Service Features from D1.3 [41], a set of components are needed for the NEAT

core transport system. Updated versions of core building blocks from D2.2 are provided in this docu-

ment, presenting the final work done in WP2.

Based on the sets of NEAT Components defined in D1.1, the NEAT core components are cate-

gorised into:

12 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

Middlebox
Traversal

Happy Eyeballs
(SCTP/TCP,
IPv4/IPv6)

NEAT Flow Endpoint
Statistics

Callback-based
NEAT API

Framework

Security

Connect to a
name

NEAT Logic

NEAT Flow
Endpoint

NEAT
Framework

Components

NEAT
Transport

Components

NEAT
Selection

Components

Policy
Components

CIB
source
format

Policy file
format

PIB

CIB

NEAT-
integrated

usrsctp

NEAT flow
group and

local priority

Happy Apps

NEAT Policy Manager

Policy
Interface (PI)

Figure 3: Building blocks of the NEAT core transport system. Each colour denotes a different compo-
nent grouping.

• NEAT Framework components: a set of components that provide the most basic functionality

required to run a NEAT System. These include the following building blocks: a NEAT Flow End-

point, a callback-based NEAT API Framework, NEAT Logic, the ability to Connect to a name and

NEAT Flow Endpoint Statistics.

• NEAT Transport components: a set of components responsible for providing the functions to

configure and manage the NEAT Transport Service for a particular NEAT Flow. These include

the possibility to use DTLS over UDP or SCTP as well as TLS over TCP when Security is being

requested. In addition, the NEAT-integrated usrsctp component provides support for the SCTP

protocol in user-land in NEAT. Achieving Peer-to-peer communication in the presence of mid-

dleboxes is achieved by integrating the WebRTC data channel into NEAT, which provides the

means for middlebox traversal. Finally, Local flow priority provides a framework to use priorities

among different NEAT Flows.

• NEAT Selection components: these components are responsible for selecting an appropriate

transport endpoint and a set of protocols/mechanisms. These include building blocks for path

support discovery using mechanisms at the transport layer. Happy Eyeballs can be done between

different transport protocols (e.g., SCTP/TCP) or IP versions (IPv4/IPv6). NEAT also provides

similar functionality using a feedback mechanism at the application layer named Happy Apps.

• NEAT Policy components: a set of components providing the possibility to manage and apply

different policies. These building blocks include: a NEAT Policy Manager (PM), a Policy Informa-

tion Base (PIB), a Characteristics Information Base (CIB) and one or multiple CIB sources. The

NEAT Policy Manager provides a Policy Interface (PI) to communicate with the PIB and CIB(s)

and maintains policies defined by the application developer or system developer using a prede-

fined file format.

Figure 3 illustrates the set of core system components and their potential dependency on each

other. As seen on the list above, such components are found in four out of the five component group-

ings in Figure 1 (Framework, Transport, Selection, and Policy); NEAT Signalling and Handover com-

ponents are part of the Extended Transport System developed in Work Package 3, and therefore out of

13 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

the scope of this document2.

1.4 Overview of component interaction during connection setup

This section presents an overview of NEAT operations from the moment a connection setup attempt

is made at the API level until the connection handle is returned to the user. This process has been

depicted in Figure 4, a simplified workflow showing how NEAT components interact when opening a

flow. Further details on the workings of each component will be provided in Section 3.

With regards to the complexity of the connection setup in NEAT, it is worth nothing that this is no

more complex than the mechanisms currently used by widely popular applications, such as state-of-

the-art web browsers like Mozilla Firefox or Google Chrome, in order to establish a functioning end-

to-end connection. Such mechanisms already include caching the outcome of connection attempts,

trying multiple protocols (e.g., in case of QUIC or TCP Fast Open (TFO)) and so on. NEAT presents

to developers of new applications a low entry barrier to implement and use advanced mechanisms

similar to those deployed by such major applications.

A connection is set up in NEAT as shown in Figure 4, as follows (numbers in the arrows correspond

to the step numbers below):

1. The application specifies properties of the communication with neat_set_property and the

application calls neat_open in the NEAT User API.

2. The NEAT Logic sends application properties and inferred properties to the Policy Manager us-

ing a JSON object to query for feasible transport candidates, based on the destination domain

name. This is done for pre-filtering purposes, to avoid running DNS lookups for non-feasible

candidates since this may increase setup latency.

3. The Policy Manager finds available transport candidates based on the available policies in PIB

and cached information in CIB.

4. The Policy Manager replies to NEAT Logic’s query with an initial set of transport candidates eli-

gible for name resolution (e.g., DNS lookup).

5. The NEAT Logic initiates one or more name resolution requests to the Name Resolver and the

Name Resolver replies with resolved addresses, then the NEAT Logic inserts these into each can-

didate.

6. The NEAT Logic makes a second call to the Policy Manager, asking it to build candidates for

attempting flow establishment based on the outcome of name resolution.

7. The Policy Manager builds candidates, with priorities given by policy and available CIB informa-

tion. A candidate consists of the following:

• Transport protocol

• Interface

• Port

• Local address
2The SDN controller integration work, first described in Deliverable D3.1 [22], provides an example of NEAT Signalling com-

ponents. See also [13].

14 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

1.
R

eq
ue

st
 to

 o
pe

n
flo

w
 &

 p
as

s
ap

pl
ic

at
io

n
re

qu
ire

m
en

ts

2.
Q

ue
ry

 P
M

 a
bo

ut
 fe

as
ib

le
 tr

an
sp

or
t c

an
di

da
te

s
ba

se
d

on
 d

es
tin

at
io

n
do

m
ai

n
na

m
e

3.
PM

 d
et

er
m

in
es

 a
va

ila
bl

e
tra

ns
po

rt
ca

nd
id

at
es

 th
at

 fu
lfi

l
po

lic
y

(P
IB

) a
nd

 c
ac

he
d

in
fo

rm
at

io
n

(C
IB

)

4.
R

et
ur

n
ra

nk
ed

 li
st

 o
f f

ea
si

bl
e

tra
ns

po
rt

ca
nd

id
at

es
 a

s
pr

e-
fil

te
r f

or
 a

dd
re

ss
 re

so
lu

tio
n

5.
R

es
ol

ve
 a

dd
re

ss
es

6.
Q

ue
ry

 P
M

 a
bo

ut
 fe

as
ib

le
 tr

an
sp

or
t c

an
di

da
te

s
fo

r
re

so
lv

ed
 d

es
tin

at
io

n
ad

dr
es

s

7.
PM

 b
ui

ld
s

ca
nd

id
at

es
, a

ss
ig

ni
ng

 p
rio

rit
ie

s
ba

se
d

on
PI

B/
C

IB
 m

at
ch

es

8.
R

et
ur

n
ra

nk
ed

 li
st

 o
f f

ea
si

bl
e

tra
ns

po
rt

ca
nd

id
at

es
 fo

r
flo

w
 e

st
ab

lis
hm

en
t

9.
D

o
H

ap
py

 E
ye

ba
lls

 w
ith

 c
an

di
da

te
s,

 a
cc

or
di

ng
 to

sp
ec

ifi
ed

 p
rio

rit
ie

s

10
.R

et
ur

n
ha

nd
le

 to
 s

el
ec

te
d

tra
ns

po
rt

so
lu

tio
n

11
.

C
ac

he
 re

su
lts

 fr
om

 H
ap

py
 E

ye
ba

lls
 in

 th
e

C
IB

Po
lic

y

A
pp

lic
at

io
n

N
EA

T
U

se
r A

PI

Po
lic

y
M

an
ag

er

C
IB

PI
B

Fr
am

ew
or

k
Se

le
ct

io
n

1

1 2

3

3

4

5

6

7

8

9

11 111010

7

Fi
gu

re
4:

Si
m

p
lifi

ed
w

o
rk

fl
ow

sh
ow

in
g

h
ow

N
E

AT
co

m
p

o
n

en
ts

in
te

ra
ct

w
h

en
o

p
en

in
g

a
fl

ow
.

15 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

• Remote address

• Priority

• Application properties

8. The Policy Manager returns the list of suitable candidates that the NEAT Logic should use to

establish a flow. If one or more of the application properties are specified as desired (i.e., prece-

dence 1), multiple candidates may be generated with different settings for that property.

9. The NEAT Logic generates a list of candidates and initiates the Happy Eyeballs algorithm. The

Happy Eyeballs module tries to connect each candidate. The delay between each candidate is

determined from the priority of the candidate. A lower value implies a higher priority. The con-

nection may be handled by either the operating system using its own implementation of the

protocol, or using a user-space implementation of the protocol. A handle to the first connection

that connects successfully and meets all required properties set by the application is returned to

the NEAT Logic along with the outcome of Happy Eyeballs results for other transport candidates.

10. The NEAT Logic starts polling the socket internally, and reports back to the application that a

connection has been established using the on_connected callback if it has been specified using

neat_set_operations.

11. The NEAT Logic makes a third call to the Policy Manager, asking for the results from Happy Eye-

balls to be cached in the CIB.

Now that the NEAT Flow is open for use, NEAT Logic will report that the flow is readable or writable

if the respective on_readable or on_writable callbacks have been specified with

neat_set_operations. The application can close the flow with neat_close.

The following provides a step-by-step example of how the mapping of application properties to the

transport candidates is done by the Policy Manager internally:

a. A NEAT application requests the reliable_transport and low_latency properties (step #1

in Figure 4). In addition, for the sake of simplicity let us assume the application has provided a

remote_IP property, and thus no DNS resolution is necessary (i.e., steps #2–5 are not needed).

b. The PM is asked to check the profiles and policies available in the PIB (step #6 in Figure 4).

i) A profile matching reliable_transport generates candidates for TCP and SCTP con-

nections. The SCTP candidate is assigned a higher score than TCP.

ii) A low latency profile adds the socket options TCP_NODELAY:1 and SCTP_NODELAY:1, re-

spectively, to the candidates.

iii) The low latency policy further dictates that only wired interfaces should be used for the

connection.

c. From the CIB repository the PM infers that, for the requested destination, SCTP is only supported

when going through interface eth1 (step #7 in Figure 4).

d. The PM returns the following ranked candidates to HE (step #8 in Figure 4):

i) Transport: SCTP, SCTP_nodelay:1, interface:eth1

ii) Transport: TCP, TCP_nodelay:1, interface:eth0

iii) Transport: TCP, TCP_nodelay:1, interface:eth1

16 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

APP NEAT NEAT APP

neat_close()

transport close

transport close

on_close()

on_close()

Figure 5: Schematic depiction of how NEAT end points interact when tearing down a flow. Transport
close messages between the two end points would correspond to a FIN exchange in the case of TCP, or
a SHUTDOWN / SHUTDOWN ACK / SHUTDOWN COMPLETE exchange in the case of SCTP.

1.5 Overview of connection tear down

This section presents an overview of NEAT operations when an established flow gets teared down. This

process has been depicted in Figure 5, showing a message-sequence-diagram of involved function

calls and callbacks.

The application can actively initiate the tear down of a NEAT flow by calling neat_close at any

time. After initiating the tear down, all unsent data in the flow’s outgoing buffer and all unread data

in the flow’s receive buffer gets discarded. Afterwards the application cannot send or receive any data

from the flow by calling neat_read and neat_write, respectively. If the underlying transport proto-

col is connection-oriented, e.g. SCTP or TCP, NEAT will initiate the closing procedure of the particular

transport protocol. After calling neat_close, the only callbacks that could be called from the NEAT

library are on_close, if the tear down has been successful, and on_error, if an error occurred.

The successful tear down of the flow is signaled to the application via the on_close callback.

This callback is called when the application has either actively initiated the tear down process with

neat_close or when the remote side has closed the underlying transport connection. If the remote

side has closed the transport connection, the application can still read data from the flow’s receive

buffer. When the on_close callback returns, the NEAT library frees all flow related resources and the

closing procedure is finished.

2 Coding with the NEAT User API

Network application programmers need to understand how to program against the NEAT User API,

and the way in which programs can take advantage of the services offered by a NEAT System.

Before describing the core transport functions, this section provides a tutorial that describes how

an application uses the NEAT User API. It introduces the new API, which is simpler and more flexible

than the existing sockets API. Key concepts are then explained, such as the role of NEAT contexts, NEAT

flows and flow properties. A minimal client and server example is finally presented to illustrate how

network programming tasks can be eased using this API. In the example, snippets of code illustrate

the main concepts of the API. This tutorial is publicly available online3 at: http://neat.readthedocs.io/

en/latest/tutorial.html.

This section also presents an example that summarises the benefits of using the asynchronous and

non-blocking NEAT User API when a developer writes an application against it.

3The version included here has been edited slightly.

17 of 131 Project no. 644334

http://neat.readthedocs.io/en/latest/tutorial.html
http://neat.readthedocs.io/en/latest/tutorial.html

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

Finally, bindings for the Python programming language are described. These have been developed

by the NEAT project and made available on the public Github repository.

2.1 NEAT User API Tutorial

2.1.1 What is NEAT?

NEAT is a library for networked applications, intended to replace existing socket APIs with a simpler,

more flexible API. Additionally, NEAT enables endpoints to make better decisions as to how to utilise

the available network resources and adapts based on the current condition of the network.

With NEAT, applications are able to specify the service they want from the transport layer. NEAT

will determine which of the available protocols fit the requirements of the application and tune all the

relevant parameters to ensure that the application gets the desired service from the transport layer,

based on knowledge about the current state of the network when this information is available.

NEAT enables applications to be written in a protocol-agnostic way, thus allowing applications

to be future-proof, leveraging new protocols as they become available, with minimal to no change.

Further, NEAT will try to connect with different protocols if possible, making it able to gracefully fall

back to another protocol if it turns out that the most optimal protocol is unavailable, for example,

because of a middlebox such as a firewall. A connection in the NEAT API will only fail if all protocols

satisfying the requirements of the application are unable to connect, or if no available protocol can

satisfy the requirements of the application.

Most operating systems support the same protocols. However, the same protocol may often have

a slightly different API on different operating systems. NEAT provides the same API on all supported

operating systems, which are currently Linux, FreeBSD, OpenBSD, NetBSD, and OS X. The availability

of a protocol depends on whether the protocol is supported by the OS or if NEAT is compiled with

support for a user-space stack that implements the protocol.

2.1.2 Contexts and Flows

The most important concept in the NEAT API is that of the flow. A flow is similar to a socket in the tra-

ditional Berkeley Socket API. It is a bidirectional link used to communicate between two applications,

on which data may be written to or read from. Further, just like a socket, a flow uses some transport

layer protocol to communicate.

However, one important difference is that a flow is not as strictly tied to the underlying transport

protocol in the same way a socket is. In fact, a flow may be created without even specifying which

transport protocol to use. This is not possible with a socket.

The same applies to modifying options on sockets. Setting the same kind of option on two sockets

with different protocols in the traditional socket API requiressetsockopt calls with different protocol

IDs, option names, and sometimes even values with different units. The setsockopt calls also vary

depending on what system you are on. This is not the case with NEAT. As long as the desired option is

available for the protocol in use, the API for setting that option is the same for all protocols, and on all

operating systems supported by NEAT.

A context is a common environment for multiple flows. Along with flows, it contains several ser-

vices that are used by the flows internally in NEAT, such as a DNS resolver and a Happy Eyeballs im-

plementation. Flows within a context are polled together. A flow may only belong to the context in

18 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

which it is created, and it cannot be transferred to a different context. Most applications need only

one context.

2.1.3 Properties

Different types of applications have different requirements and desires to the services provided by the

transport layer. An application for real-time communication may require the communication to have

properties such as low latency, high bandwidth, quality of service, and have less strict requirements

with regards to reliable delivery. Losing a packet or bit errors may be less critical to these applica-

tions. A web browser, on the other hand, might require communication that is (partially) ordered and

error-free. A BitTorrent application might only require the ability to send packets to some destination

with a minimum amount of effort, and not at the expense of other applications with stricter capacity

requirements.

With the traditional socket API, the application requirements dictate the choice of which protocol

to use. With NEAT, this is not the case. NEAT enables applications to specify the properties of the

communication instead of specifying which protocol to use. Some properties may be required; other

properties may be desired to support a specific application or user preference, but are not mandatory.

Based on the properties, NEAT will determine which protocols can support the requirements of

the application and the options to set for each protocol. This mapping of application properties to a

list of potential transport candidates is done with the help of the Policy Manager (PM) (§ 3.4.1).

Consequently, the NEAT System will try to establish a connection by trying each of the transport

candidates until one connection succeeds, a method known as Happy Eyeballing.

The ability to specify properties instead of protocols allows applications to take advantage of avail-

able protocols where possible. By Happy Eyeballing, NEAT ensures that applications are able to cope

with different network configurations, and gracefully fall back to another protocol if necessary should

the most desirable protocol not be available for whatever reason.

2.1.4 Asynchronous API

The NEAT API is asynchronous and non-blocking. Once the execution is transferred to NEAT, it will

poll the sockets internally, and, when an event happens, execute the appropriate callback in the appli-

cation. This creates a more natural way of programming communicating applications than with the

traditional socket API.

The three most important callbacks in the NEAT API are on_connected, on_readable and

on_writable, which may be set per flow. The on_connected callback will be executed once the

flow has connected to a remote endpoint, or a flow has connected to a server listening for incoming

connections. The on_writable and on_readable callbacks are executed once data may be written

to or read from the flow without blocking.

Figure 6 depicts a sufficient callback flow for most applications.

2.1.5 A minimal server

To get started using the NEAT API, we will write a small server that will send Hello, this is NEAT!

to any client that connects to it. Later, we will write a similar client, before modifying this server so

that it works with the client.

We summarise the functionality as follows:

19 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

on_connected()	

on_readable()	 on_writable()	

on_all_wri1en()	

Figure 6: NEAT callback flow.

• When a client connects, start writing when the flow is writable.

• When a flow is writable, write Hello, this is NEAT! to it.

• When the flow has finished writing, close it.

Pay close attention to how easily this natural description can be implemented using the NEAT API.

Here are the includes that should be put on top of the file:

#include <neat.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h>

We will start writing the main function of our server. The first thing is to declare a few variables:

main(int argc, char *argv[])

{

struct neat_ctx *ctx;

struct neat_flow *flow;

struct neat_flow_operations ops;

And initialise them:

ctx = neat_init_ctx();

flow = neat_new_flow(ctx);

memset(&ops, 0, sizeof(ops));

We are already familiar with the flow and the context. neat_init_ctx is used to initialise the

context, and neat_new_flow creates a new flow within the context. The neat_flow_operations

struct is used to tell NEAT what to do when certain events occur. We use that next to tell which function

we want NEAT to call when a client connects:

ops.on_connected = on_connected;

neat_set_operations(ctx, flow, &ops);

The function on_connected has not been defined yet, we will do that later. Now that we have told

NEAT what to do with a connecting client, we are ready to accept incoming connections.

20 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

if (neat_accept(ctx, flow, 5000, NULL, 0)) {

fprintf(stderr, "neat_accept failed\n");

return EXIT_FAILURE;

}

This will instruct NEAT to start listening to incoming connections on port 5000. The flow passed to

neat_accept is cloned for each accepted connection. The last two parameters are used for optional

arguments. This example does not use them.

The last function call we will do in main will be the one that starts the show:

neat_start_event_loop(ctx, NEAT_RUN_DEFAULT);

return EXIT_SUCCESS;

}

When this function is called, NEAT will start doing work behind the scenes. When called with the

NEAT_RUN_DEFAULT parameter, this function will not return until all flows have closed and all events

have been handled. It is also possible to run NEAT without having NEAT capture the main loop. The

final main function of our server application looks like this:

main(int argc, char *argv[])

{

struct neat_ctx *ctx;

struct neat_flow *flow;

struct neat_flow_operations ops;

ctx = neat_init_ctx();

flow = neat_new_flow(ctx);

memset(&ops, 0, sizeof(ops));

// ops.on_readable = on_readable;

ops.on_connected = on_connected;

neat_set_operations(ctx, flow, &ops);

if (neat_accept(ctx, flow, 5000, NULL, 0)) {

fprintf(stderr, "neat_accept failed\n");

return EXIT_FAILURE;

}

neat_start_event_loop(ctx, NEAT_RUN_DEFAULT);

return EXIT_SUCCESS;

}

It is time to start working on the callbacks that NEAT will use. The first callback we need is

on_connected.

static neat_error_code

on_connected(struct neat_flow_operations *ops)

{

21 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

From the functional description above, we know that we need to write to connecting clients when

this becomes possible. The callback contains a parameter that is a pointer to aneat_flow_operations

struct, which we can use to update the active callbacks of the flow. We set the on_writable callback

so that we can start writing when the flow becomes writable:

ops->on_writable = on_writable;

It is also good practice to set the on_all_written callback when setting the on_writable call-

back:

ops->on_all_written = on_all_written;

The change is applied by calling neat_set_operations, as in the main function:

neat_set_operations(ops->ctx, ops->flow, ops);

return NEAT_OK;

}

Next, we write the on_writable callback:

static neat_error_code

on_writable(struct neat_flow_operations *ops)

{

Here, we call the function that will send our message:

neat_write(ops->ctx, ops->flow, "Hello, this is NEAT!", 20, NULL, 0);

opCB->on_writable = NULL;

return NEAT_OK;

}

Here we specify the data to send and the length of the data. As with the neat_accept function,

neat_write takes optional parameters. We do not need to set any optional parameters for this call

either, so again we pass NULL and 0.

The final callback we need to implement is the on_all_written callback:

static neat_error_code

on_all_written(struct neat_flow_operations *ops)

{

Here, we call neat_close to close the flow:

neat_close(ops->ctx, ops->flow);

return NEAT_OK;

}

This is the final piece of our server. You may now compile and run the server. You can use the tool

socat to test it. The following output should be observed:

$ socat STDIO TCP:localhost:5000

Hello, this is NEAT!

$ socat STDIO SCTP:localhost:5000

Hello, this is NEAT!

22 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

2.1.6 A minimal client

Next, we implement a client that will send the message “Hi!” after connecting to a server, and then

receive a reply from the server. A fair amount of the code will be similar to the server we wrote above,

so you may make a copy of the code for the server and use that as a starting point for the client.

We will make two additions and one change to the main function. First, since we are connecting to

a server, we change the neat_accept call to neat_open instead:

if (neat_open(ctx, flow, "127.0.0.1", 5000, NULL, 0)) {

fprintf(stderr, "neat_open failed\n");

return EXIT_FAILURE;

}

Next, we will specify a few properties for the flow:

static char *properties = "{\n\

\"transport\": [\n\

{\n\

\"value\": \"SCTP\",\n\

\"precedence\": 1\n\

},\n\

{\n\

\"value\": \"TCP\",\n\

\"precedence\": 1\n\

}\n\

]\n\

}";

These properties will tell NEAT that it can select either SCTP or TCP as the transport protocol.

The properties are applied with neat_set_properties, which may be done at any point between

neat_new_flow and neat_open.

Finally, we add neat_free_ctx after neat_start_event_loop, so that NEAT may free any al-

located resources and exit gracefully. The complete main function of the client will look like this:

int

main(int argc, char *argv[])

{

struct neat_ctx *ctx;

struct neat_flow *flow;

struct neat_flow_operations ops;

ctx = neat_init_ctx();

flow = neat_new_flow(ctx);

memset(&ops, 0, sizeof(ops));

ops.on_connected = on_connected;

neat_set_operations(ctx, flow, &ops);

neat_set_property(ctx, flow, properties);

if (neat_open(ctx, flow, "127.0.0.1", 5000, NULL, 0)) {

23 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

fprintf(stderr, "neat_open failed\n");

return EXIT_FAILURE;

}

neat_start_event_loop(ctx, NEAT_RUN_DEFAULT);

neat_free_ctx(ctx);

return EXIT_SUCCESS;

}

Leave the on_connected callback similar to the server.

We change the on_writable callback to send “Hi!” instead:

static neat_error_code

on_writable(struct neat_flow_operations *ops)

{

neat_write(ops->ctx, ops->flow, "Hi!", 3, NULL, 0);

return NEAT_OK;

}

The on_all_written callback should not close the flow, but instead stop writing and set the

on_readable callback:

static neat_error_code

on_all_written(struct neat_flow_operations *ops)

{

ops->on_readable = on_readable;

ops->on_writable = NULL;

neat_set_operations(ops->ctx, ops->flow, ops);

return NEAT_OK;

}

Finally, we will write an on_readable callback for the client. We allocate some space on the

stack to store the received data, and use a variable to store the length of the received message. If the

neat_read call returns successfully, we print the message. Finally, we stop the internal event loop

in NEAT, which will eventually cause the call to neat_start_event_loop in the main function to

return. The on_readable callback should look like this:

static neat_error_code

on_readable(struct neat_flow_operations *ops)

{

uint32_t bytes_read = 0;

char buffer[32];

if (neat_read(ops->ctx, ops->flow, buffer, 31, &bytes_read, NULL, 0) == NEAT_OK)

{

buffer[bytes_read] = 0;

fprintf(stdout, "Read %u bytes:\n%s", bytes_read, buffer);

}

neat_close(ops->ctx, ops->flow);

24 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

return NEAT_OK;

}

And there we have our finished client! You can test it with socat:

$ socat TCP-LISTEN:5000 STDIO

When you run the client, you should see Hi! show up in the output from socat. You can type a short

message followed by pressing return, and it should show up in the output on the client.

2.1.7 Tying the client and server together

A few small changes are required on the server to make the client and server work together. In the

on_connected callback, the server should set the on_readable callback instead of the

on_writable callback. An on_readable callback should be added and read the incoming message

from the client, and set the on_writable callback.

The callbacks for the updated server are:

static neat_error_code

on_readable(struct neat_flow_operations *ops)

{

uint32_t bytes_read = 0;

char buffer[32];

if (neat_read(ops->ctx, ops->flow, buffer, 31, &bytes_read, NULL, 0) == NEAT_OK)

{

buffer[bytes_read] = 0;

fprintf(stdout, "Read %u bytes:\n%s\n", bytes_read, buffer);

}

ops->on_readable = NULL;

ops->on_writable = on_writable;

ops->on_all_written = on_all_written;

neat_set_operations(ops->ctx, ops->flow, ops);

return NEAT_OK;

}

static neat_error_code

on_writable(struct neat_flow_operations *ops)

{

neat_write(ops->ctx, ops->flow, "Hello, this is NEAT!", 20, NULL, 0);

ops->on_writable = NULL;

ops->on_readable = NULL;

ops->on_all_written = on_all_written;

neat_set_operations(ops->ctx, ops->flow, ops);

return NEAT_OK;

}

25 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

static neat_error_code

on_all_written(struct neat_flow_operations *ops)

{

ops->on_readable = NULL;

ops->on_writable = NULL;

ops->on_all_written = NULL;

neat_set_operations(ops->ctx, ops->flow, ops);

neat_close(ops->ctx, ops->flow);

return NEAT_OK;

}

static neat_error_code

on_connected(struct neat_flow_operations *ops)

{

ops->on_readable = on_readable;

neat_set_operations(ops->ctx, ops->flow, ops);

return NEAT_OK;

}

2.2 Summary of the benefits of coding with the NEAT User API

This section summarises the simplifications possible when a developer writes an application using

the asynchronous and non-blocking NEAT User API.

A key simplification is that the NEAT User API offers a uniform way to access networking function-

ality, independent from the underlying network protocol or operating system, resulting in portable

network applications. Many common network programming tasks like address resolution, buffer

management, encryption, connection establishment and handling are built into the NEAT Library

and can be used by any application that uses NEAT.

The callback interface is implemented using the libuv [3] library which provides asynchronous I/O

across multiple platforms. Coding is also simplified because the NEAT User API executes callbacks

in the application when an event from the underlying transport happens, creating a more natural

and less error-prone way of network programming than with the traditional socket API. This differs

from the code written against the socket API since the callbacks and event loop are handled internally,

whereas the socket-based code needs to maintain the event loop and perform the polling.

Our experience with various applications ported to use NEAT shows a reduction of the networking

code size by≈ 20% for each application4, as the library streamlines a number of connection establish-

ment steps. For example, the single function call neat_open requests name resolution and all other

functions required before communication can start, hiding complex boilerplate code. Ported applica-

tions remain fully interoperable with regular TCP/IP-based implementations, while being able to take

advantage of NEAT functions. Besides, they can benefit from support for alternative transports, when

available, relieving programmers from dealing with fallbacks between protocols.

4The code for several of these applications is available at https://github.com/NEAT-project/neat/tree/master/examples.

26 of 131 Project no. 644334

https://github.com/NEAT-project/neat/tree/master/examples

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

To illustrate some benefits of developing applications against the NEAT API, we have developed a

simple example application called FileStreamer [1]. This application sends multiple files from a server

to a client using the SCTP protocol. Leveraging the multi-streaming functionality in SCTP, different

files can be transferred on different SCTP streams simultaneously.

Our code contains two examples on the server side, one with NEAT (server_neat.c) and one

without NEAT, purely written with the traditional socket API (server_sockets.c). The client side

(file receiver) is identical in both cases—NEAT is able to operate one-sided regardless of the support

for it on the other end point, which may ease deployment and simplify migration of applications.

Listings 1 and 2 provide code snippets from FileStreamer, showing how a listening socket is set up

with NEAT and with the socket API, respectively.

As seen in these listings, address resolution, creating and binding to a socket and their related error

handling are all done internally by NEAT. Also, using the traditional socket API, SCTP has to be selected

explicitly, and the SCTP_INITMSG socket option has to be initialised with the number of streams the

application wishes to use (lines 42 to 48 of Listing 2). A similar setting without any protocol-related pa-

rameter configuration is achieved by setting the protocol-agnostic

NEAT_TAG_STREAM_COUNT value and the property that expresses the requirement to use SCTP us-

ing neat_set_property (lines 24 and 30 of Listing 1).

In addition, the socket-based code differs from the code with NEAT in that the former needs to

handle itself the polling and event loop (do_poll function in server_sockets.c, not shown here).

1 int

2 setup_neat(const char* port, int file_count, char *file_names[])

3 {

4 int rc = 0;

5 struct neat_ctx *ctx = NULL;

6 struct neat_flow *flow = NULL;

7 struct neat_flow_operations ops;

8 NEAT_OPTARGS_DECLARE(1);

9

10 NEAT_OPTARGS_INIT();

11 memset(&ops, 0, sizeof(ops));

12

13 if ((ctx = neat_init_ctx()) == NULL)

14 return -1;

15

16 if ((flow = neat_new_flow(ctx)) == NULL) {

17 rc = -1;

18 goto error;

19 }

20

21 no_of_files = file_count;

22 files = file_names;

23

24 NEAT_OPTARG_INT(NEAT_TAG_STREAM_COUNT, file_count);

25

26 ops.on_connected = on_connected;

27 ops.on_error = on_error;

28 neat_set_operations(ctx, flow, &ops);

27 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

29

30 neat_set_property(ctx, flow, "{\"transport\": [{\"value\": \"SCTP\", \"

precedence\": 2}]}");

31

32 if (neat_accept(ctx, flow, 5001, NEAT_OPTARGS, NEAT_OPTARGS_COUNT) != NEAT_OK)

33 goto error;

34

35 neat_start_event_loop(ctx, NEAT_RUN_DEFAULT);

36

37 error:

38 if (ctx)

39 neat_free_ctx(ctx);

40

41 return rc;

42 }

Listing 1: Setting up a listening socket with NEAT.

1 int

2 setup_listen_socket(const char* port, int file_count, char* file_names[])

3 {

4 struct addrinfo hints;

5 struct addrinfo *result, *rp;

6 int sfd, s;

7

8 memset(&hints, 0, sizeof(struct addrinfo));

9 hints.ai_family = AF_UNSPEC;

10 hints.ai_socktype = SOCK_STREAM;

11 hints.ai_flags = AI_PASSIVE;

12 hints.ai_protocol = IPPROTO_SCTP;

13 hints.ai_canonname = NULL;

14 hints.ai_addr = NULL;

15 hints.ai_next = NULL;

16

17 s = getaddrinfo(NULL, port, &hints, &result);

18 if (s != 0) {

19 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));

20 return -1;

21 }

22

23 for (rp = result; rp != NULL; rp = rp->ai_next) {

24 sfd = socket(rp->ai_family, rp->ai_socktype,

25 rp->ai_protocol);

26 if (sfd == -1)

27 continue;

28

29 if (bind(sfd, rp->ai_addr, rp->ai_addrlen) == 0)

30 break; /* Success */

31

32 close(sfd);

28 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

33 }

34

35 if (rp == NULL) {

36 fprintf(stderr, "Could not bind\n");

37 return -1;

38 }

39

40 freeaddrinfo(result);

41

42 struct sctp_initmsg initmsg;

43 memset(&initmsg, 0, sizeof(initmsg));

44

45 initmsg.sinit_num_ostreams = file_count;

46

47 if (setsockopt(sfd, IPPROTO_SCTP, SCTP_INITMSG, &initmsg, sizeof(initmsg)) < 0)

48 return -1;

49

50 if (listen(sfd, SOMAXCONN) < 0) {

51 return -1;

52 }

53

54 listen_fd = sfd;

55 files = file_names;

56 no_of_files = file_count;

57

58 return 0;

59 }

Listing 2: Setting up a listening socket with the socket API.

2.3 Python bindings for the NEAT User API

Language bindings for the Python programming language have been generated, as a part of the con-

tinued development of the NEAT User API. This has not only been a feature request by potential ex-

ternal users, but it also serves to demonstrate flexibility with regard to programming paradigms. This

section discusses the motivation and stumbling blocks, as well as the results achieved.

2.3.1 Motivation for NEAT Python bindings

The NEAT library is envisaged to become a core part of the future Internet architecture. In order to

reach that goal, it has to support multiple platforms and programming environments. Thus, on the

one hand, the NEAT library should run on several different Operating Systems. To this end, NEAT

already supports FreeBSD, Linux, OS X and NetBSD.

On the other hand, however, it is also important to support more than just a single programming

language. For comparison, the legacy Berkeley socket API is by now accessible in virtually every pro-

gramming language which is productively used. This enables a multitude of interoperating pieces of

software, tied together by the common grounds of a TCP/UDP transport system. It allows a client writ-

ten in one language to connect and communicate with a server written in a totally different language.

29 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

In the long term, a similar flexibility should at least be possible for the NEAT System. Although

NEAT itself is for a large part written in the C programming language, the option to use whatever lan-

guage application programmers are comfortable with can substantially increase adaption rate and

long-term viability and relevance of the NEAT library. In order to demonstrate that such a flexibil-

ity is indeed possible, bindings for an additional language have been generated for the NEAT library.

The Python programming language has been chosen to serve as an example, demonstrating the basic

flexibility of adapting NEAT concepts to a new programming environment.

Python is a scripting language that is both easy to learn and well known to many programmers. It is

used in many high-profile software projects, such as Dropbox, YouTube, and Wikipedia. Its low barrier

of entry makes it a favourable target for programming tutorials. For these reasons, it has been chosen

as a target language for NEAT.

2.3.2 Using SWIG as solution approach

Making a C library usable from another language can be a tedious process of writing glue code. Luckily,

there exist a number of frameworks that can help with this task. For interconnection with the Python

programming language, the following options are available and have been considered:

• Boost.python (http://www.boost.org/libs/python/): This library is part of the larger Boost pack-

age, a set of C++ extension libraries. It serves well to connect C++ and Python and has also some

advantages for connecting C with Python.

• SIP (https://www.riverbankcomputing.com/software/sip/): The SIP library (not to be confused

with the Session Initiation Protocol, SIP) is another library that has been developed to simplify

the creation of language bindings for Python. It has been used to create the PyQt library – Python

language bindings for the Qt GUI toolkit. Like Boost.python, it is focused on Python only.

• SWIG (http://www.swig.org/): The “Simplified Wrapper and Interface Generator” is an interface

compiler that can generate language bindings by parsing C or C++ header files and creating the

necessary wrapper code automatically. It is not limited to just Python, but instead supports a

large number of popular languages such as Perl, Java, or C#.

Due to its advantages, the SWIG framework was selected for the implementation of NEAT language

bindings. It is a proven framework that has been used in many open-source projects, such as Subver-

sion5, PyOpenGL6, or Xapian7. It supports creation of language bindings for a large number of well-

known programming languages. Due to time and resource constraints, only bindings for Python are

implemented in this project, but the use of SWIG will make it easy in any potential future development

to integrate other languages as well.

The overall goal of this development effort was not to create a full-blown, production-ready inter-

face. Rather, we wanted to demonstrate that it is possible with reasonable effort to make the NEAT

library usable outside of a C/C++ scope without exposing the programmer of the target language to

too many implementation details. More specifically, the following two goals were aimed for:

• To remain as close to the original interface as possible. Ideally, the programmer should be able

to figure out the Python API without needing additional documentation. Additional helper func-

tions that are not documented in the original C-based API will be avoided.

5https://subversion.apache.org/
6http://pyopengl.sourceforge.net/
7https://xapian.org/

30 of 131 Project no. 644334

http://www.boost.org/libs/python/
https://www.riverbankcomputing.com/software/sip/
http://www.swig.org/
https://subversion.apache.org/
http://pyopengl.sourceforge.net/
https://xapian.org/

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

• To allow the programmer to write code in a “pythonic” way. Python programmers are used to a

particular programming style, and the API should strive not to present any unexpected surprises.

A basic test case for this can be constructed by getting a Python server to talk to a C client, thereby

demonstrating interoperability between two different programming languages. This approach was

chosen here. To this end, the “minimal server” example shown in the NEAT online tutorial (§ 2.1.5)

has been translated to Python.

2.3.3 Challenges and result: NEAT communication between C and Python

The generation of Python bindings with the SWIG framework is for a large part easy to accomplish. A

SWIG definition file neat_swig.i has been written, based upon which SWIG can generate most of

the necessary glue code itself. The translation of the example code into Python is then straightforward.

To demonstrate, here the on_writable function used in the example code of minimal_server is

used to compare the differences between its C and its Python implementation:

1 static neat_error_code

2 on_writable(struct neat_flow_operations *opCB)

3 {

4 const unsigned char message[] = "Hello, this is NEAT!";

5 neat_write(opCB->ctx, opCB->flow, message, 20, NULL, 0);

6 return NEAT_OK;

7 }

Listing 3: The on_writable function in C.

1 def on_writable(ops):

2 message = "Hello, this is NEAT!"

3 neat_write(ops.ctx, ops.flow, message, 20, None, 0)

4 return NEAT_OK

Listing 4: The on_writable function in Python.

The particular issue of callback functions makes the Python bindings more complicated. The NEAT

library uses callback functions extensively to provide an event-oriented programming approach for

the API users. These callbacks are defined in the neat_flow_operations struct in neat.h (cf. Ap-

pendix B). This problem is highlighted clearly in theon_connected function of theminimal_server

example, which is shown here again in its C and Python implementations:

1 static neat_error_code

2 on_connected(struct neat_flow_operations *opCB)

3 {

4 opCB->on_writable = on_writable;

5 opCB->on_all_written = on_all_written;

6 neat_set_operations(opCB->ctx, opCB->flow, opCB);

7

8 return NEAT_OK;

9 }

Listing 5: The on_connected function in C.

31 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

1 def on_connected(ops):

2 ops.on_writable = on_writable

3 ops.on_all_written = on_all_written

4 neat_set_operations(ops.ctx, ops.flow, ops)

5 return NEAT_OK

Listing 6: The on_connected function in Python.

While, at first glance, the translation to Python appears to be straightforward, the concept of a

Python program initializing a C library and asking it to call a Python function, again, make the imple-

mentation complicated. In line 2 of the Python function this means that the ops.on_writable on

the left side of the assignment is a C construct, whereas the on_writable on the right side of the as-

signment is a Python function object. Clearly, intelligent type conversion, which remains transparent

to the programmer, is necessary in this assignment to support such an intuitive programming style.

Although the SWIG library cannot solve this problem on its own, it still provides appropriate mech-

anisms (“typemaps”) to handle such situations. This has been used here to avoid having to change the

API (e.g., by introducing a new converter method which the programmer would have to call manu-

ally). Instead, a type converter was defined for the SWIG library, which keeps an internal list of Python

callback objects defined by the user, and uses C dispatcher functions to convert arguments and call

the right Python function in time. To demonstrate, part of the code is shown here (the full code is

available in neat_swig.i):

1 static struct {

2 PyObject *on_connected;

3 PyObject *on_error;

4 PyObject *on_readable;

5 PyObject *on_writable;

6 PyObject *on_all_written;

7 PyObject *on_network_status_changed;

8 PyObject *on_aborted;

9 PyObject *on_timeout;

10 PyObject *on_close;

11

12 PyObject *on_send_failure;

13 PyObject *on_slowdown;

14 PyObject *on_rate_hint;

15 } py_callbacks ;

16

17 static neat_error_code dispatch_fx(struct neat_flow_operations *ops, PyObject *

pyfunc) {

18 PyObject *pyops = SWIG_NewPointerObj(SWIG_as_voidptr(ops),

SWIGTYPE_p_neat_flow_operations, 0 | 0);

19 PyObject *res = PyObject_CallFunctionObjArgs(pyfunc, pyops, NULL);

20 unsigned long val = PyLong_AsUnsignedLong(res);

21 return (neat_error_code)(val);

22 }

23

24 static neat_error_code disp_on_connected(struct neat_flow_operations *ops) {

25 return dispatch_fx(ops, py_callbacks.on_connected);

32 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

26 }

Listing 7: Wrapper code for callbacks in neat_swig.i.

Here, the py_callbacks structure provides an internal look-up table of user-defined Python call-

backs. The dispatch_fx function translates the neat_flow_operations argument into a Python

object, hands it to the specified Python function object, which is then called. Error codes are then

translated back to C and returned to the caller. Finally, the disp_on_connected function serves as a

simple wrapper, feeding the right Python function object to the actual dispatch function. This mecha-

nism now allows the user to define appropriate NEAT callback functions in Python and plug them into

the NEAT framework.

2.3.4 Summary

With the above issues solved, the Python bindings are available for programmers to use. For demon-

stration purposes, the minimal_server example has been completely translated into Python and

is available in the NEAT Github source code repository. While the feature is still considered experi-

mental and, thus, has to be activated deliberately, still the barrier of entry for NEAT is lowered further.

With a first implementation operational, programmers now have the chance to test and improve the

availability of NEAT features in Python.

3 Core Transport Functions

Note: The descriptions of NEAT components presented in this section replace those in Deliverable

D2.2, reflecting the status of the implementation at the end of Work Package 2 activities.

This section presents a detailed description of the transport functionalities required to realise the

NEAT core transport system based on the components introduced in Section 1.3. Each component

is described in detail and Transport Service Features they provide are specified when applicable. In-

dicative examples of their operation are given where relevant, and relationships among these building

blocks are identified. This document does not aim to provide all the implementation details, rather,

it intends to present the design choices that have been made. For a more comprehensive reference of

the NEAT User API, please refer to Appendix B (also available online at: http://neat.readthedocs.io/

en/latest/index.html). Where appropriate, snippets of sample code in C are used for better presenta-

tion.

3.1 NEAT Framework Components

To run a NEAT System a minimum set of basic building blocks has to be implemented, comprising the

NEAT Framework components.

This translates into being able to create a NEAT Flow and connect to a host using a domain name

address, as well as the ability to translate the functionalities behind the NEAT User API into appropri-

ate function calls, e.g., to different protocols, mechanisms, etc.

Setting up a NEAT Flow can be done by using an event-based, user-space NEAT library that imple-

ments a callback-based API (NEAT API Framework). Once a NEAT Flow is initialised, it will contain a

33 of 131 Project no. 644334

http://neat.readthedocs.io/en/latest/index.html
http://neat.readthedocs.io/en/latest/index.html

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

structure that keeps all of its relevant information during its lifetime (NEAT Flow Endpoint). A NEAT

Flow can be assigned to one or more domain names as well as IP addresses (Connect to a name). The

functionalities behind the NEAT User API requested for the initialised NEAT Flow require code that

“glues” together different components (NEAT Logic). This is not a monolithic chunk of code separated

from other components, but rather code that is scattered throughout other components as well as the

NEAT User API. Finally, gathering statistics and information about the operation of the system is nec-

essary for diagnostics and performance monitoring (NEAT Flow Endpoint Statistics). The operation

of each of these components is presented in the rest of this subsection.

3.1.1 NEAT Flow Endpoint

The NEAT Flow Endpoint is a NEAT structure that has a role similar to that of the Transmission Control

Block (TCB) in the context of TCP [15]. This provides access to the additional flow information that

extends the transport components and realises a transport-independent interface. Through the NEAT

Logic parts of this information are used by most of the other building blocks (e.g., Policy Manager,

Happy Eyeballs, Security, etc.).

A NEAT Flow Endpoint neat_flow structure corresponds to a single operating system socket or to

a stream if multistreaming is used (only for multistreaming capable protocols, like SCTP) and keeps

the information about the socket or stream that is relevant during the NEAT Flow’s lifetime (Listing 8).

This includes:

• A structure that holds information about the underlying OS socket as well as the pointer to

the OS file descriptor or a user-space SCTP socket. This information includes: socket fam-

ily (e.g. AF_INET, AF_INET6), socket type (e.g., SOCK_DGRAM, SOCK_STREAM), protocols (e.g.,

IPPROTO_UDP, IPPROTO_TCP, IPPROTO_SCTP)

• Remote peer domain name.

• Server certificates and key in PEM format [12, 27, 28, 31].

• Remote port.

• Remote socket address.

• Local addresses.

1 struct neat_flow

2 {

3 struct neat_pollable_socket *socket;

4 TAILQ_HEAD(neat_listen_socket_head, neat_pollable_socket) listen_sockets;

5

6 const char *name;

7 char *server_pem;

8 char *key_pem;

9 uint16_t port;

10 const struct sockaddr *sockAddr; // raw unowned pointer into resolver_results

11 json_t *user_ips;

Listing 8: NEAT Flow Endpoint structure.

34 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

It also contains information relevant to the NEAT System operations (e.g., DNS resolver outcome),

flow statistics and desired properties set by an application (e.g., QoS, ECN, etc.) and includes (List-

ing 9):

• Address resolver results, i.e., DNS results.

• Flow statistics: this includes the path Maximum Transmission Unit (MTU), slow-start threshold,

round-trip time (RTT), etc.

• Requested properties for the NEAT Flow: these are properties that an application has specified

when the flow has been created via the NEAT User API. They are in JSON format (see Listing 24).

The Policy Manager translates these properties into a list of candidates.

• Candidate list: it is used by the Happy Eyeballs component (§ 3.3.1) to create concrete socket

configuration probes.

• Connection attempt count: the number of different configurations the Happy Eyeballs compo-

nent has tried.

• QoS: the abstract Quality of Service (QoS) parameter to be used with this flow (see Table 2).

• ECN: a value to indicate if use of Explicit Congestion Notification (ECN) should be attempted.

• Group: the group ID that this flow belongs to. This is used for coupled congestion control

(§ 3.2.3).

• Flow priority: the priority of the given NEAT flow relative to the other flows in the same group.

Must be between 0.1 and 1.0.

• Congestion control: The congestion control algorithm to be used for this flow.

12 struct neat_resolver_results *resolver_results;

13 struct neat_flow_statistics flow_stats;

14 json_t *properties;

15 struct neat_he_candidates *candidate_list;

16 uint8_t heConnectAttemptCount;

17

18 uint8_t qos;

19 uint8_t ecn;

20

21 uint32_t group;

22 float priority;

23

24 const char *cc_algorithm;

Listing 9: NEAT Flow Endpoint structure (continued).

The NEAT System provides a callback-based API to the application. Pointers to the callback func-

tions are kept in the NEAT Flow Endpoint structure (Listing 10). Their usage will be clarified in § 3.1.2.

25 struct neat_flow_operations *operations;

Listing 10: NEAT Flow Endpoint structure (continued).

35 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

The flow endpoint structure is used as the main hub for communication with the underlying socket.

Therefore it contains the pointers to the NEAT base loop structure neat_ctx, functions for accessing

the underlying socket, and NEAT Flow internal flags and buffers (the write buffer facilitates preserva-

tion of message boundaries if the selected transport protocol is message-based), see Listing 11.

26 // NEAT base loop structure:

27 struct neat_ctx *ctx;

28

29 // NEAT flow state.

30 uint8_t state;

31

32 // Functions for accessing the underlying socket:

33 neat_read_impl readfx;

34 neat_write_impl writefx;

35 neat_accept_impl acceptfx;

36 neat_connect_impl connectfx;

37 neat_close_impl closefx;

38 neat_listen_impl listenfx;

39 neat_shutdown_impl shutdownfx;

40

41 // NEAT internal flags:

42 unsigned int hefirstConnect : 1;

43 unsigned int firstWritePending : 1;

44 unsigned int acceptPending : 1;

45 unsigned int isPolling : 1;

46 unsigned int everConnected : 1;

47 unsigned int isDraining : 1;

48 unsigned int isServer : 1;

49 unsigned int isSCTPMultihoming : 1;

50 unsigned int security_needed : 1;

51 unsigned int isSCTPIdata : 1;

52 unsigned int isClosing : 1;

53 unsigned int notifyDrainPending : 1;

54 unsigned int preserveMessageBoundaries : 1;

55 unsigned int eofSeen : 1;

56 unsigned int skipCertVerification : 1;

57

58 // Write buffer:

59 struct neat_message_queue_head bufferedMessages;

60

61 uv_poll_cb callback_fx;

62 struct neat_iofilter *iofilters;

Listing 11: NEAT Flow Endpoint structure (continued).

SCTP needs additional internal flow states and variables shown in Listing 12. This includes addi-

tional information needed if user-space SCTP or multistreaming are configured.

63 // The memory buffer for reading. Used of SCTP reassembly.

64 unsigned char *readBuffer; // memory for read buffer

65 size_t readBufferSize; // amount of received data

36 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

66 size_t readBufferAllocation; // size of buffered allocation

67 int readBufferMsgComplete; // it contains a complete user message

68

69 unsigned int streams_requested;

70

71 #if defined(USRSCTP_SUPPORT)

72 neat_accept_usrsctp_impl acceptusrsctpfx;

73 #endif

74

75

76 #ifdef SCTP_MULTISTREAMING

77 unsigned int multistream_check : 1;

78 unsigned int multistream_shutdown : 1;

79 unsigned int multistream_reset_in : 1;

80 unsigned int multistream_reset_out : 1;

81

82 uv_timer_t *multistream_timer;

83 uint16_t multistream_id;

84 LIST_ENTRY(neat_flow) multistream_next_flow;

85

86 struct neat_read_queue_head multistream_read_queue;

87 size_t multistream_read_queue_size;

88

89 neat_flow_states multistream_state;

90 #endif

Listing 12: NEAT Flow Endpoint structure (continued).

The NEAT System supports TCP Fast Open [16] and Listing 13 shows states needed by this feature,

e.g., a buffer that holds data that should be sent on a SYN packet or after the connection is established

for protocols that do not support this feature, etc.

92 unsigned char *tfoBuffer; // buffer for tcp fast open.

93 size_t tfoBufferWritten; // amount of data in the tfo buffer.

94 struct neat_tlv *tfoOptions;

95 uint32_t tfoOptionsCount;

96 }

Listing 13: NEAT Flow Endpoint structure (continued).

Some examples of the operation: Listing 14 shows an example of how the NEAT Flow Endpoint

structure is used. After DNS is resolved a list of candidates is handed over to the Happy Eyeballs com-

ponent and this component will try to establish connections using some or all of the given candidates.

After the first candidate is connected, the NEAT System has all socket parameters and these param-

eters are stored in the neat_flow structure. The other candidates are released. This is done in the

he_connected_cb callback function. For simplicity, some parts of the code are omitted.

Thehe_connected_cb function is called when a connection is established or an error occurs. The

function parameter uv_poll_t holds a pointer to the candidate, i.e., a neat_he_candidate struc-

ture. The neat_he_candidate structure holds a pointer to the corresponding neat_flow structure.

37 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

When the first candidate is successfully connected, the neat_flow structure is filled with the neces-

sary information (lines 34-47). When the other candidates are connected, the corresponding socket is

closed (lines 50-63).

1 static void

2 he_connected_cb(uv_poll_t *handle, int status, int events)

3 {

4 struct neat_he_candidate *candidate = handle->data;

5 struct neat_flow *flow = candidate->pollable_socket->flow;

6 struct neat_he_candidates *candidate_list = flow->candidate_list;

7

8 assert(candidate);

9 assert(candidate->pollable_socket);

10 assert(flow);

11

12 int so_error = 0;

13 unsigned int len = sizeof(so_error);

14 if (getsockopt(candidate->pollable_socket->fd, SOL_SOCKET, SO_ERROR, &so_error,

&len) < 0) {

15

16 neat_log(NEAT_LOG_DEBUG, "Call to getsockopt for fd %d failed: %s",

candidate->pollable_socket->fd, strerror(errno));

17

18 uv_poll_stop(handle);

19 uv_close((uv_handle_t*)handle, free_he_handle_cb);

20

21 neat_io_error(candidate->ctx, flow, NEAT_ERROR_INTERNAL);

22 return;

23 }

24 status = so_error;

25 neat_log(NEAT_LOG_DEBUG, "%s - Connection status: %d", __func__, status);

26

27 if (flow->hefirstConnect && (status == 0)) {

28 // This is the fastest candidate.

29 // Change the flow internal state after one of the candidates was

successfully connected.

30 flow->hefirstConnect = 0;

31

32 assert(flow->socket);

33

34 flow->socket->fd = candidate->pollable_socket->fd;

35 flow->socket->flow = flow;

36 flow->socket->handle = handle;

37 flow->socket->handle->data = flow->socket;

38 flow->socket->family = candidate->pollable_socket->family;

39 flow->socket->type = candidate->pollable_socket->type;

40 flow->socket->stack = candidate->pollable_socket->stack;

41 flow->socket->write_size = candidate->pollable_socket->write_size

;

38 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

42 flow->socket->write_limit = candidate->pollable_socket->

write_limit;

43 flow->socket->read_size = candidate->pollable_socket->read_size;

44 flow->socket->sctp_explicit_eor = candidate->pollable_socket->

sctp_explicit_eor;

45

46 flow->everConnected = 1;

47 flow->isPolling = 1;

48

49 } else {

50 // This is not the first candidate so close the socket.

51 neat_log(NEAT_LOG_DEBUG, "%s - NOT first connect", __func__);

52

53 uv_poll_stop(handle);

54 uv_close((uv_handle_t*)handle, free_he_handle_cb);

55

56 neat_log(NEAT_LOG_DEBUG, "%s:Release candidate", __func__);

57 TAILQ_REMOVE(candidate_list, candidate, next);

58 free(candidate->pollable_socket->dst_address);

59 free(candidate->pollable_socket->src_address);

60 free(candidate->pollable_socket);

61 free(candidate->if_name);

62 json_decref(candidate->properties);

63 free(candidate);

64 }

65 }

Listing 14: Use of the NEAT Flow Endpoint structure.

Provided Transport Service Feature(s): This building block is part of the most basic functionality of

the NEAT System and does not relate to any specific application requirement.

Related building blocks:

• NEAT Logic (§ 3.1.3).

3.1.2 NEAT API Framework (callback)

The NEAT System implements a callback-based API based on the libuv [3] library to provide portable

asynchronous I/O across multiple platforms. The base of the NEAT System is an event loop that needs

to be initialised before any NEAT functionality can be accessed. NEAT uses libuv [3] as an event li-

brary. Once the NEAT base structure has started, an application can request a connection (create

NEAT Flow), communicate over it (write data to the NEAT Flow and read received data from the NEAT

Flow) and register callback functions that will be executed upon the occurrence of certain events.

The NEAT System offers several basic functions for accessing a NEAT Flow (Listing 15):

• Creating and closing a NEAT Flow, i.e., a NEAT Flow Endpoint structure (this structure is de-

scribed in § 3.1.1).

39 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

• Setting callback functions.

• Opening a connection to a remote host: this function starts the NEAT Logic for selecting and

creating the most adequate Transport Service. The outcome of this asynchronous call can be

an on_connected event in case of success, or an on_error event if a failure occurs. Besides a

remote host name and a port number, this function can take some additional parameters such

as the flow priority, a local address to be used, requesting multihoming, etc. These additional

parameters are optional. The NEAT System supports the TCP Fast Open extension [16] that

sends data on the TCP SYN packet. An extended version of the neat_open function, called

neat_open_with_data, accepts the data to be sent on a SYN packet as a function parameter

as well (neat_open_with_data corresponds to the OPEN_WITH_EARLY_DATA primitive from

D1.3 [41]).

• Read from, and write to, a NEAT Flow and through it from/to the underlying socket: the return

values correspond to the return values of the operating system function calls, or of the TLS/DTLS

function calls if secure communication is established.

• Functions for getting and setting properties: using these functions, an application can set or

change transport requirements (e.g., reliable transport, low latency, etc.). The properties are in a

JSON format, presented in Listing 24.

• Opening a NEAT Flow for listening (i.e., server-side socket): this triggers anon_connected event

if a new connection request is received or an on_error event in the case of an error. Besides a

port number, a local address to be used and the maximal number of streams can be specified.

These parameters are optional.

• Getting flow statistics (e.g., round-trip time, slow-start threshold, etc.).

• Querying the flow for local and remote peer addresses.

• Setting a user specified timeout, i.e., TCP_USER_TIMEOUT.

• Setting some parameters that are specific to certain protocols, e.g., neat_set_primary_dest

only used with SCTP and neat_set_checksum_coverage only used for UDP and UDP-Lite.

• Setting server certificates (i.e., neat_secure_identity).

• Setting additional desired parameters, such as QoS, ECN and the TCP_NOTSENT_LOWAT param-

eter to limit amount of unsent data in a TCP socket.

1 struct neat_flow *neat_new_flow(struct neat_ctx *ctx);

2

3 neat_error_code neat_shutdown(struct neat_ctx *ctx, struct neat_flow *flow);

4 neat_error_code neat_close(struct neat_ctx *ctx, struct neat_flow *flow);

5 neat_error_code neat_abort(struct neat_ctx *ctx, struct neat_flow *flow);

6

7 neat_error_code neat_set_operations(struct neat_ctx *ctx, struct neat_flow *flow,

8 struct neat_flow_operations *ops);

9 neat_error_code neat_open(struct neat_ctx *ctx, struct neat_flow *flow,

10 const char *name, const char *port,

11 struct neat_tlv optional[], unsigned int opt_count);

40 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

12 neat_error_code neat_open_with_data(struct neat_ctx *mgr, struct neat_flow *flow,

13 const char *name, uint16_t port,

14 struct neat_tlv optional[], unsigned int opt_count,

15 const unsigned char *buffer, uint32_t amt, uint32_t *

written);

16 neat_error_code neat_read(struct neat_ctx *ctx, struct neat_flow *flow,

17 unsigned char *buffer, uint32_t amt, uint32_t *actualAmt,

18 struct neat_tlv optional[], unsigned int opt_count);

19 neat_error_code neat_write(struct neat_ctx *ctx, struct neat_flow *flow,

20 const unsigned char *buffer, uint32_t amt,

21 struct neat_tlv optional[], unsigned int opt_count);

22

23 neat_error_code neat_get_property(struct neat_ctx *ctx, struct neat_flow *flow,

24 const char* name, void *ptr, size_t *size);

25 neat_error_code neat_set_property(struct neat_ctx *ctx, struct neat_flow *flow,

26 const char* properties);

27

28 neat_error_code neat_accept(struct neat_ctx *ctx, struct neat_flow *flow,

29 uint16_t port, struct neat_tlv optional[],

30 unsigned int opt_count);

31

32 neat_error_code neat_get_stats(struct neat_ctx *ctx, char **neat_stats);

33

34 int neat_getlpaddrs(struct neat_ctx *ctx, struct neat_flow *flow,

35 struct sockaddr** addrs, const int local);

36 void neat_freelpaddrs(struct sockaddr* addrs);

37

38 neat_error_code neat_change_timeout(struct neat_ctx *ctx, struct neat_flow *flow,

39 unsigned int seconds);

40

41 neat_error_code neat_set_primary_dest(struct neat_ctx *ctx, struct neat_flow *flow,

42 const char *name);

43 neat_error_code neat_set_checksum_coverage(struct neat_ctx *ctx,

44 struct neat_flow *flow,

45 unsigned int send_coverage,

46 unsigned int receive_coverage);

47

48 neat_error_code neat_secure_identity(struct neat_ctx *ctx, struct neat_flow *flow,

49 const char *filename, int pemType);

50

51 neat_error_code neat_set_qos(struct neat_ctx *ctx, struct neat_flow *flow,

52 uint8_t qos);

53 neat_error_code neat_set_ecn(struct neat_ctx *ctx, struct neat_flow *flow,

54 uint8_t ecn);

55

56 neat_error_code neat_set_low_watermark(struct neat_ctx *ctx, struct neat_flow *flow,

57 uint32_t watermark);

Listing 15: NEAT API functions.

41 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

The NEAT API offers multiple run-time events that call the corresponding functions if registered.

The set of events that are triggered are given in Listing 16.

1 neat_flow_operations_fx on_connected;

2 neat_flow_operations_fx on_error;

3 neat_flow_operations_fx on_readable;

4 neat_flow_operations_fx on_writable;

5 neat_flow_operations_fx on_all_written;

6 neat_flow_operations_fx on_network_status_changed;

7 neat_flow_operations_fx on_aborted;

8 neat_flow_operations_fx on_timeout;

9 neat_flow_operations_fx on_close;

10 neat_cb_send_failure_t on_send_failure;

11 neat_cb_flow_slowdown_t on_slowdown;

12 neat_cb_flow_rate_hint_t on_rate_hint;

Listing 16: NEAT callback functions.

In the following, we present a simple illustration of the NEAT Flow connection establishment and

maintenance. Each application needs to initialise the base NEAT structure and before a communi-

cation can start its event loop needs to be started. An application creates a NEAT Flow Endpoint for

each connection. The application specifies its requirements by utilising the neat_set_property

and neat_get_property functions of the NEAT User API called for each individual NEAT Flow End-

point. When the application requirements are specified, the connection establishment can be re-

quested by calling the neat_open function or the neat_open_with_data function (corresponding

to the OPEN primitive and the OPEN_WITH_EARLY_DATA primitive from D1.3 [41]). The function takes

a host name and a port number as parameters and maybe some optional parameters. On the server

side, the neat_accept function (corresponding to the ACCEPT primitive from D1.3 [41]) will be called

with parameters: port number and local address the socket should be listening to, and optionally ad-

ditional parameters.

These two function calls will trigger a set of actions inside the NEAT System. The specified appli-

cation requirements will be used by the NEAT Logic and the corresponding building blocks (e.g., Pol-

icy Manager and Happy Eyeballs) to select and probe selected socket configurations. If a socket that

satisfies the application requirements has been successfully connected, an on_connected callback

function, if registered, will be invoked. Otherwise the on_error callback function will be invoked.

The application can register callback functions for on_socket_readable and

on_socket_writable events which will translate into poll parameters for the underlying socket.

The functions will be executed if the corresponding event applies.

The NEAT System buffers data that needs to be written. This is necessary to facilitate preservation

of message boundaries if the selected transport protocol is message-based. The on_all_written

event is triggered when all buffered data is written out to the OS socket.

In case of an error (e.g., NEAT internal error, socket error, socket being closed, etc.) an on_error

event callback function will be invoked.

Some examples of the operation: Listing 17 presents a simple example of setting callback functions

and waiting for a callback function to be called. In function main a NEAT base loop structure and a

NEAT Flow are created (lines 21 and 28). Callback functions on_error and on_connected are set

in lines 59–60. neat_open is called in line 70 and if it does not return an error the NEAT loop will be

42 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

started (line 71). In case of an error the on_error function will be invoked, otherwise on_connected

will be invoked which sets callback functions for on_all_written and on_readable.

1

2 static struct neat_flow_operations ops;

3

4 /*

5 Error handler

6 */

7 static neat_error_code on_error(struct neat_flow_operations *opCB)

8 {

9 exit(EXIT_FAILURE);

10 }

11

12 static neat_error_code on_connected(struct neat_flow_operations *opCB)

13 {

14 opCB->on_all_written = on_all_written;

15 opCB->on_readable = on_readable;

16 return NEAT_OK;

17 }

18

19 int main(int argc, char *argv[])

20 {

21 if ((ctx = neat_init_ctx()) == NULL) {

22 debug_error("could not initialise context");

23 result = EXIT_FAILURE;

24 goto cleanup;

25 }

26

27 // new neat flow

28 if ((flow = neat_new_flow(ctx)) == NULL) {

29 debug_error("neat_new_flow");

30 result = EXIT_FAILURE;

31 goto cleanup;

32 }

33

34 char *config_property = "{\

35 \"transport\": [\

36 {\

37 \"value\": \"SCTP\",\

38 \"precedence\": 1\

39 },\

40 {\

41 \"value\": \"SCTP/UDP\",\

42 \"precedence\": 1\

43 },\

44 {\

45 \"value\": \"TCP\",\

46 \"precedence\": 1\

43 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

47 }\

48]\

49 }";

50

51 // set properties

52 if (neat_set_property(ctx, flow, config_property)) {

53 fprintf(stderr, "%s - error: neat_set_property\n", __func__);

54 result = EXIT_FAILURE;

55 goto cleanup;

56 }

57

58 // set callbacks

59 ops.on_connected = on_connected;

60 ops.on_error = on_error;

61

62 if (neat_set_operations(ctx, flow, &ops)) {

63 debug_error("neat_set_operations");

64 result = EXIT_FAILURE;

65 goto cleanup;

66 }

67

68 // wait for on_connected or on_error to be invoked

69 // The last 2 arguments are the remote server name and port number.

70 if (neat_open(ctx, flow, argv[argc - 2], argv[argc - 1]) == NEAT_OK) {

71 neat_start_event_loop(ctx, NEAT_RUN_DEFAULT);

72 } else {

73 debug_error("neat_open");

74 result = EXIT_FAILURE;

75 goto cleanup;

76 }

77

78 ...

79 }

Listing 17: NEAT API Framework example.

Provided Transport Service Feature(s): This building block is part of the most basic functionality of

the NEAT System and it does not relate to any specific Transport Service Feature.

Related building blocks:

• NEAT Logic (§ 3.1.3).

3.1.3 NEAT Logic

The NEAT Logic component is at the core of the NEAT System as part of the NEAT Framework compo-

nents and is responsible for providing functionalities behind the NEAT User API. It orchestrates and

“glues” together different components. The NEAT Logic is not a monolithic piece of code separated

44 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

from other components, but its code is scattered throughout other components as well as the NEAT

User API.

Requests made via the NEAT User API are translated into function calls to the Policy Manager or

other building blocks; for instance, calls to select the transport protocols to be instantiated, or calls to

Handover and Signalling after receiving a set of candidates from the Policy Manager. Transport proto-

cols are configured via the relevant NEAT Transport components. The NEAT Logic dispatches differ-

ent decisions returned by the Policy Manager by translating them into certain function calls related to

NEAT components—e.g., by calling the Happy Eyeballs function(s) for SCTP/TCP or IPv6/IPv4. In sim-

pler terms, it glues different building blocks of the NEAT System together and makes them operational

in one uniform system.

The NEAT Logic also maps the primitives and events exposed to the application (as described in

Deliverable D1.3 [41]) to the primitives provided by each transport protocol.

A detailed sequence of the NEAT Logic operation with regards to the connection setup in NEAT is

presented in Section 1.4 and therefore we avoid repeating it in here for the sake of brevity.

Some examples of the operation: An example of the NEAT Logic operation is when the neat_open

call, corresponding to the OPEN primitive (see § 2.1.2 of D1.3 [41]), is used to open a NEAT Flow. The

OPEN primitive does not specify any specific transport protocol. After processing the optional argu-

ments passed in the neat_tlv struct (e.g., priority, flow group or congestion control), and initialising

the NEAT Flow’s address name and port, it would send the properties to the Policy Manager using the

send_properties_to_pm() function8. This corresponds to the first query to the Policy Manager as

depicted in Figure 4 and explained in Section 1.4.

1 neat_error_code

2 neat_open(neat_ctx *ctx, neat_flow *flow, const char *name, uint16_t port,

3 struct neat_tlv optional[], unsigned int opt_count)

4 {

5 ...

6

7 HANDLE_OPTIONAL_ARGUMENTS_START()

8 OPTIONAL_INTEGER(NEAT_TAG_STREAM_COUNT, stream_count)

9 OPTIONAL_INTEGER(NEAT_TAG_FLOW_GROUP, group)

10 OPTIONAL_FLOAT(NEAT_TAG_PRIORITY, priority)

11 OPTIONAL_STRING(NEAT_TAG_CC_ALGORITHM, cc_algorithm)

12 HANDLE_OPTIONAL_ARGUMENTS_END();

13

14 ...

15

16 flow->name = strdup(name);

17 if (flow->name == NULL)

18 return NEAT_ERROR_OUT_OF_MEMORY;

19 flow->port = port;

20 flow->group = group;

21 flow->priority = priority;

22

23 ...

8The flow properties should be already set by neat_set_property() prior to the neat_open function call.

45 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

24

25 send_properties_to_pm(ctx, flow);

26 return NEAT_OK;

27 }

Listing 18: NEAT open function.

Provided Transport Service Feature(s): There are no specific Transport Service Features associated

to this building block. However, the operation of NEAT Logic is essential for other building blocks to

provide their Transport Service Features.

Related building blocks:

• NEAT Flow Endpoint Statistics (§ 3.1.5).

• Middlebox Traversal (§ 3.2.2).

• NEAT Flow Endpoint (§ 3.1.1).

• NEAT API Framework (callback) (§ 3.1.2).

• Connect to a name (§ 3.1.4).

• Happy Eyeballs (§ 3.3.1).

• Security (§ 3.2.4).

• NEAT Policy Manager (via Policy Interface) (§ 3.4.1).

3.1.4 Connect to a name

The higher-level API offered by NEAT provides transport-independent name resolution. This ap-

proach not only avoids dependencies on specific network technology, but is also essential to support

multiple active network interfaces. The NEAT system address resolver is named Connect to a name.

NEAT will by default resolve domains using the public DNS servers provided by Google and OpenDNS

(both v4 and v6). If a system-wide resolver file is found, then the list is extended with the servers

contained in this file.

Currently we support resolving names using plain DNS (i.e., no DNSSEC), but the component is

designed in such a way that extending the functionality is easy. One can for example imagine that a

new name resolution scheme, protocol or technique will be introduced later on. An IP literal can also

be provided, in which case no translation will be performed.

The resolver supports multi-homed hosts. When the NEAT resolve function is called, the query

will by default be sent over all available (interface, address) tuples. Only A records are requested over

IPv4 addresses, while AAAA records are requested over the available IPv6 addresses. A challenge on

multi-homed hosts, which cannot be solved within NEAT, is to make sure that we use the correct in-

terface/address when communicating with a DNS server. This is an issue when for example a host is

connected to overlapping networks, or when the DNS servers acquired through DHCP have public IP

addresses. There is currently no standardised syntax for how to specify which local interface/address

should be used to communicate with a DNS server. We designed, implemented and shared a solution

46 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

for the popular open-source resolver dnsmasq9, but the discussions with the dnsmasq community

have not progressed yet.

Interface/address tuples used by NEAT are stored in a list which is dynamically updated based on

events generated by the OS. All major OS support mechanisms for generating events when address-

es/network interfaces are added/removed. The mechanisms differ based on OS, so small shims are

needed to support different operating systems. However, the core code (and the content of the list) is

platform-independent.

The interface/address list is stored in the neat_ctx object introduced in § 3.1.1 and is available for

use by all other building blocks. For example the address monitoring functionality, combined with an

internal notification subsystem, will make reacting to interfaces going up/down more efficient across

all blocks.

In summary, the following features are provided by the Connect to a name component:

• Asynchronous DNS lookup: name resolving will not block the calling application.

• Address monitoring: (interface, address) tuples are stored in a dynamically updated list, which is

available to all building blocks.

• Multi-homing support: the resolver will resolve names using all (interface, address) tuples on a

host by default.

• Private network marking: names resolving to internal addresses will be marked and can be easily

filtered.

Some examples of the operation: To use the resolver, a developer has to create the NEAT context

first using the neat_init_ctx call. Then, the neat_resolver_init function has to be called to set

up the resolver. This function is passed two function pointers, one that will be called when the resolver

finishes (or times out), and one called when the resolver can be released.

After these two functions have been called, it is simply a matter of calling neat_getaddrinfo.

This function works very similar to the POSIX-compliant getaddrinfo. In other words, it is possible

to limit which address family and transport protocol for the resolver to query/return. One change

from the normal getaddrinfo is that returning multiple transport protocols is supported.

When the resolving is done (or has failed, e.g., due to a timeout), the provided callback function is

called. If successful, this function is passed a list of all (interface, source address, destination address)

tuples. For example these can be used by a developer to connect to the desired host, or the list will

serve as input to the Happy Eyeballs component.

Provided Transport Service Feature(s): Connect to a name.

Related building blocks:

• Connect to a name has no dependencies on other building blocks except NEAT Logic (§ 3.1.3),

but several building blocks may depend on the offered functionality. One example is Happy

Eyeballs (§ 3.3.1) that must be provided with a set of source/destination addresses to probe for

IPv4/IPv6 and transport-protocol connectivity.
9http://www.thekelleys.org.uk/dnsmasq/doc.html

47 of 131 Project no. 644334

http://www.thekelleys.org.uk/dnsmasq/doc.html

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

3.1.5 NEAT Flow Endpoint Statistics

NEAT not only automates important network decisions for applications, it can also help understand

how these decisions were taken. By making this flow information available to the user in a consistent

form, it eases the burden of identifying the root causes of any network problems.

The NEAT Flow Endpoint Statistics component is responsible for maintaining information about

the current state of the NEAT System, and for gathering usage statistics for both the overall NEAT

System and the respective NEAT Flows. This information resembles the information provided by

netstat in a traditional socket stack, but at the NEAT Flow level of detail. It can be used for application-

level diagnostic purposes and for allowing applications to monitor the performance of application

flows (e.g., measuring the throughput of NEAT Flows) to take decisions based on provided detailed

information.

The information provided by the NEAT Flow Endpoint Statistics building block can be divided into

three sets: 1) current NEAT state, 2) NEAT Flow statistics, and 3) NEAT System statistics. The current

NEAT state set of information provides a detailed view of the current state of the NEAT System. It

provides a list of all NEAT Flows that are currently open on the NEAT System along with details about

their configuration. The NEAT Flow statistics set of information contains historical statistics since the

NEAT instance was created. The NEAT System statistics set of information contains system-wide usage

statistics of the NEAT System. Some examples of these three categories are listed below:

• Current NEAT state: flow ID, flow creation time, local name, local transport address(es), destina-

tion name, destination transport address(es), send queue size, protocol state, transport param-

eters (e.g., Nagle, DSCP, timeout, etc.), flow properties, interface(s) in use.

• NEAT Flow statistics: number of bytes sent/received, number of messages sent/received, num-

ber of messages dropped locally, number of handovers, connection duration, creation time.

• NEAT System statistics: total number of bytes sent/received, total number of messages sent/re-

ceived, total number of messages dropped locally, total number of opened/accepted/closed/

aborted connections,

The number and content of the elements returned after a call to the statistics interface will vary

between NEAT instances, and even within the lifetime of one NEAT context. Different operating sys-

tems, for example, support different transport options, meaning that the NEAT state will look different

between operating systems. Also, the protocol used for a particular flow will be different between

connections, meaning that a different set of available options will have to be presented each time the

statistics module is called. Each network protocol and implementation also has differences in how

many statistics are made available, leading to differences in what statistics can be provided by the

NEAT framework depending on the OS it is running on and on the protocol stack used on that OS (e.g.,

userland SCTP will expose a different set of statistics than kernel SCTP). We have, so far, not focused

on extending the native statistics support for each protocol implementation. We are rather trying to

expose the most useful statistics depending on the available statistics provided by the protocols cho-

sen by the NEAT framework. The variety of the data to be given to the caller makes it a necessity to

use a format that supports such dynamic content. In line with the standards chosen for the PM, the

statistics module therefore employs a JSON format supporting different elements in a nested structure

of objects. Listing 19 shows an example of how statistics are presented in this format. An important

consideration is to make sure that the JSON statistics elements are extended/evolved in a backwards

48 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

compatible way, such that applications will always be able to collect the statistics they expect in the

required format.

1 {

2 "flow1": {

3 "flow number": 1,

4 "sock_protocol": 6,

5 "remote_host": "localhost",

6 "readSize": 87380,

7 "bytes sent": 2712,

8 "socket type": 1,

9 "tcpstats": {

10 "reordering": 3,

11 "retransmits": 0,

12 "rtt": 19,

13 "pmtu": 65535,

14 "rttvar": 8,

15 "ssthresh": 2147483647,

16 "rcv_ssthresh": 43690,

17 "snd_cwnd": 10

18 },

19 "port": 8080,

20 "writeSize": 16384,

21 "bytes received": 1337

22 },

23 "flow2": {

24 "flow number": 1,

25 "sock_protocol": 6,

26 "remote_host": "localhost",

27 "readSize": 87380,

28 "bytes sent": 6,

29 "socket type": 1,

30 "tcpstats": {

31 "reordering": 3,

32 "retransmits": 0,

33 "rtt": 19,

34 "pmtu": 65535,

35 "rttvar": 8,

36 "ssthresh": 2147483647,

37 "rcv_ssthresh": 43690,

38 "snd_cwnd": 10

39 },

40 "port": 8080,

41 "writeSize": 16384,

42 "bytes received": 0

43 },

44 "number of flows": 2,

45 "global bytes sent": 2718,

46 "global bytes received": 1337

49 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

47 }

Listing 19: Example of the NEAT Statistics JSON format.

Applications that want to take advantage of this additional information provided by the NEAT Sys-

tem (i.e., Class-4 applications in Figure 2) can access it through the Diagnostics and Statistics Interface.

The scope of the information maintained by the NEAT Flow Endpoint Statistics is local to the applica-

tion that uses a particular NEAT System instance and is maintained within the application context as

long as the application is running.

To provide system administrators with a tool to collect network statistics across NEAT instances,

the statistics will have to be collected as a CIB source (§ 3.4.3). A neatstat tool, further described in

Deliverable D4.2 [14], can then connect to a dedicated socket of the PM to be given updated statistics

for all NEAT contexts running on a machine.

Some examples of the operation: Listing 20 shows an example of how the statistics can be called by

an application. In the example, the JSON string is simply printed to the standard output, but normally

the application would parse the string, pick the relevant elements and process the content. Since the

statistics are passed by reference, the reserved memory needs to be freed by the calling application.

This is done for efficiency reasons, to save system resources.

1 static void

2 print_neat_stats(neat_ctx *mgr)

3 {

4 neat_error_code error;

5

6 char* stats = NULL;

7 error = neat_get_stats(mgr, &stats);

8 if (error != NEAT_OK){

9 printf("NEAT ERROR: %i\n", (int)error);

10 return;

11 } else if (stats != NULL) {

12 printf("json %s\n", stats);

13 }

14

15 free(stats);

16 }

Listing 20: Simple application code that prints NEAT Statistics.

An application can leverage the information provided by the NEAT Flow Endpoint Statistics to ver-

ify that the provided Transport Services are consistent with the requested features/properties, and

also to trace decisions made by the NEAT System throughout the progress of NEAT Flows which are

normally not intended to be reported back to the application. For example, an application can pe-

riodically request current state information in order to be aware of any handover decisions (in case

seamless handover is enabled) or changes in transport protocol parameters made by the NEAT Sys-

tem.

Furthermore, the statistical information provided by this building block, combined with the other

types of statistics (e.g., path and interface statistics) that are also exposed through the Diagnostics and

Statistics Interface, can allow applications to monitor the actual application and network performance

50 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

in order to implement more specialised functionalities. For example, this information may inform

application decisions on controlling the behaviour of other applications (e.g., controlling interactions

with an SDN controller) in order to optimise performance.

Provided Transport Service Feature(s): This building block is meant mainly for diagnostic purposes

and therefore does not relate to any specific Transport Service Features.

Related building blocks:

• NEAT Logic (§ 3.1.3).

• Policy Manager (via Policy Interface) (§ 3.4.1).

3.2 NEAT Transport Components

The NEAT User API offers applications seamless access to the Transport Service Features of standard-

ised transport protocols, while ensuring packets get through the network in the presence of non-

supportive middleboxes, or challenging network paths, and providing a path to seamlessly introduce

new transport protocols or transport protocol features (e.g., a Less-Than-Best Effort (LBE) Transport

Service that considers data-delivery deadlines, developed in WP3 [23,25]). While the selection of trans-

port protocols are handled by the NEAT Selection Components, the NEAT Transport Components are

responsible for configuring and managing the transport protocols.

NEAT Transport components offer a consistent abstraction over underlying transport services, e.g.,

implementing virtual accept for UDP, thus providing a single API to applications. NEAT Transport

components allow applications to use transport stacks implemented natively in operating systems

and stacks implemented in userspace, such as the usrsctp stack (§ 3.2.1).

The NEAT Transport components manage the combination of protocol parameters used (e.g., use

of Nagle and other socket options to create a low-delay TCP service) and the transport protocol com-

ponents that are enabled (e.g., activation of SCTP-PR or SCTP-PF respectively to create a partial relia-

bility service or a service supporting fast path failover).

In addition, NEAT Transport components implement the necessary functionalities to assign differ-

ent priorities to each NEAT Flow within a flow group. These priorities then could be used by different

mechanisms at the transport level (§ 3.2.3)—e.g., coupled congestion control in TCP and per-stream

scheduling priorities in SCTP.

3.2.1 NEAT-integrated SCTP user-space stack

The usrsctp SCTP userland stack [11] presents a possibility to use SCTP as transport protocol when

the OS does not support kernel SCTP (like Windows, NetBSD or Mac OS X), and also with Linux when

SCTP is not loaded explicitly.

Usrsctp has been ported from the FreeBSD SCTP kernel sources and is still kept in sync. A fully

featured API has been provided to easily port applications.

As SCTP is an attractive alternative to TCP and UDP, it should be provided for all platforms that

NEAT runs on. Therefore, we forked the original usrsctp repository and adapted it to the needs of the

NEAT System.

51 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

Thread Support: When using usrsctp the transport is performed by raw sockets whose I/O is handled

by threads. NEAT uses libuv as support library for asynchronous I/O. In order to also use this library

for usrsctp the handling of one thread per socket had to be substituted by a single-threaded algorithm.

An option was introduced to usrsctp to allow the user to either use thread support or not. In the latter

case new API functions were also necessary to open the sockets from “outside” usrsctp. An IPv4 and

an IPv6 raw socket are opened from NEAT at startup and their handling is handed over to libuv. A new

timer is also managed by libuv that polls the SCTP event loop.

Whenever data arrive from the network, one of the sockets becomes readable. When the timer

expires, libuv is informed and triggers a callback function in NEAT that calls a function in usrsctp to

receive the data waiting at the socket. In the opposite direction, data is sent directly by writing the

complete message (including the IP header) to the socket.

UDP encapsulation: SCTP is not as widely deployed as TCP and UDP, therefore it can sometimes be

blocked by middleboxes. To enable SCTP transport nevertheless, SCTP packets can be encapsulated

in a UDP datagram and sent as UDP payload to the receiver.

To enable this feature in NEAT two more sockets (UDP/IPv4 and UDP/IPv6) have to be opened,

which are handled in the same way as the raw sockets. One advantage of UDP encapsulation is that

no root privileges are needed which is the case when raw sockets are used. That is the reason why

often SCTP/UDP is preferred over pure SCTP.

The user can choose to send data over SCTP/UDP instead of SCTP by choosing SCTP/UDP as trans-

port property. NEAT then opens a usrsctp socket and sets the socket option

SCTP_REMOTE_UDP_ENCAPS_PORT to specify the UDP encapsulation port. Afterwards the connec-

tion is handled like a normal SCTP association.

Handling Upcalls: In addition to the sockets that handle the traffic between usrsctp and the net-

work, a usrsctp socket is needed to manage the data transfer between NEAT and usrsctp. This interface

is defined by the usrsctp socket API.

In the NEAT framework the sockets between NEAT and the transport layer are managed by libuv,

i.e., libuv polls for a socket status change and calls a callback function whenever the socket becomes

readable, writable or when an error occurs. Libuv expects sockets to be represented by file descriptors,

however, the opening of a usrsctp socket returns a pointer to a struct. Therefore, libuv cannot be

used to handle usrsctp sockets. The communication between usrsctp and its upper layer is either

handled by callback functions or directly by using send and receive calls whenever it seems adequate.

In accordance with the libuv callback functionality we implemented a new upcall handling. An upcall

function can be registered that is called whenever the socket becomes readable, writable or when an

error occurs. To ensure stability the function is only triggered at the end of the handling of an incoming

packet. Now, it is up to the user to call the usrsctp send and receive functions. The callback function

has to handle all events concerning I/O processes and call the corresponding operations that were

registered by the user.

Multihoming for SCTP: An outstanding feature of SCTP is the use of multiple paths for one associ-

ation, called multihoming. This means that during one connection separate paths between the peers

can be used either as backup in case of a path failure or for sharing the load between them.

A first step to support multihoming in NEAT for SCTP and usrsctp is to bind several addresses to

one socket and thus reduce the number of candidates that have to be tested by Happy Eyeballs.

52 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

The candidates created by Happy Eyeballs are scanned and only those are taken where the source

address corresponds to one of the addresses the user wants to send from. Then for each destination

address all source addresses are assembled and bound with the bindx command which reduces the

number of candidates to the number of destination addresses.

To enable the user to use multihoming and set the source addresses to be bound, two properties

have been introduced, one to enable multihoming and one to set the addresses as a comma-separated

list. The destination addresses can also be listed like this.

ICMPv4 and ICMPv6 Support: Using Happy Eyeballs implies that many potential connections might

be tested for several protocols on different platforms. To speed up this process it is necessary to get

the information immediately, whether the destination is available for a specific protocol or port or

whether it is reachable.

To enable interpretation of ICMP messages that are sent following a failure by the destination,

the ICMP messages must be handed to the transport protocol. Special raw sockets for ICMPv4 and

ICMPv6 have to be opened that can receive ICMP datagrams. These messages are forwarded to SCTP

to be interpreted so that the adequate measures can be taken.

Support for ICMPv4 and ICMPv6 has been integrated in usrsctp, so that the upper layer is notified

when a connection is aborted because of an ICMP destination unreachable message. For the inte-

gration in NEAT, two additional sockets have to be opened and handled by libuv, and the upcoming

connection failure indication has to be interpreted correctly.

Examples of the operation: All existing examples in NEAT repository will use usrsctp instead of ker-

nel SCTP, if the USRSCTP_SUPPORT option is set for NEAT. UDP encapsulation can be chosen by se-

lecting SCTP/UDP as transport property. A new example program has been added to illustrate the

use of multihoming, i.e., setting the necessary properties. The extended userland stack is available via

https://github.com/NEAT-project/usrsctp-neat.

Provided Transport Service Feature(s): This building block is part of the most basic functionality of

the NEAT System and it does not relate to any specific Transport Service Feature.

Related building blocks:

• NEAT Logic (§ 3.1.3).

3.2.2 Middlebox Traversal

To allow NEAT-based applications to operate also in a peer-to-peer scenario, middlebox traversal has

to be considered. Modern Web Browsers support WebRTC, which allows a peer-to-peer communi-

cation supporting audio, video and data channels. The data channels provide a flexible message-

oriented communication, allowing the user to control the reliability and message sequence preser-

vation. DTLS is used to provide security. WebRTC uses STUN [36] to determine the set of usable

addresses, ICE [35] to ensure reachability and TURN [32] in case of very restrictive communication

possibilities. These are the state of the art protocols for implementing middlebox traversal.

Therefore, it seems appropriate to integrate the data channel protocol stack used by WebRTC into

NEAT. This provides middlebox traversal capabilities and the flexibility of the data channels can be

used to provide the required services for NEAT flows. Using the WebRTC data channel stack within

53 of 131 Project no. 644334

https://github.com/NEAT-project/usrsctp-neat

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

NEAT should also allow NEAT applications to communicate with applications running in a modern

Web Browser using WebRTC.

UDP

IPv4/IPv6

Application

NEAT User API

TCP SCTP New
Transport

TCP SCTP New
Transport

NEAT User Module Policy Manager
CIBPIBWebRTC

UDP-
Lite

Figure 7: The architecture of the NEAT System including WebRTC.

Figure 7 shows the NEAT architecture as depicted in [38]. WebRTC performs as a new transport

protocol over UDP. However, it cannot be looked upon as a single protocol like TCP or SCTP; several

other protocols are needed to make WebRTC work.

RawRTC Library: To be able to integrate WebRTC in NEAT, a library was needed that fulfills the task

to set up a secure connection with the peer.

We chose the RawRTC library [7] that adds SCTP, DTLS and data channel support to libre [2],

a portable and generic library for real-time communications with asynchronous I/O support. The

RawRTC library ships with its own version of the usrsctp library.

RawRTC library

DataChannel

SCTP

DTLS

ICE, STUN

Figure 8: The RawRTC library

Figure 8 shows the four layers of the RawRTC library that are needed to realize the functionality of

WebRTC.

Integration of RawRTC in NEAT: When integrating another transport protocol into the NEAT frame-

work, two interfaces have to be adapted.

First, the library had to be connected to the lower layer, i.e., to UDP. The RawRTC library relies

on libre’s event loop for its I/O. As NEAT’s communication is based on the libuv library, the event

loop of RawRTC had to be substituted by the libuv event loop. This means that all sockets had to be

changed to be managed by libuv. This included also the timers that trigger the polling. To achieve this,

functionality in libre had to be changed.

Second, the NEAT framework had to be connected to RawRTC. The communication to set up a

peer connection includes the gathering of ICE candidates, their exchange with the remote peer and

54 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

the starting of a secure transport connection. As soon as an SCTP association is established, a data

channel can be opened.

As ICE gathers the candidates for the connection and sets it up, the NEAT integrated algorithm for

Happy Eyeballs is not needed. Therefore, a “shortcut” is taken to bypass it.

Also the neat_read and neat_write functions are not needed to actually read from and write to

the socket. The data from the user is delivered to RawRTC and transferred to the data channel which

on the way back receives the user data.

To handle this functionality a shim layer had to be implemented to provide the compatibility be-

tween the NEAT framework and the RawRTC library.

API Considerations: The means of transport in WebRTC are data channels. To enable the user to

have influence on the number of data channels and to be able to open and close them, they were

mapped on flows. This means that whenever the user opens a new flow, a data channel is created,

which results in the opening of a new channel on the peer’s side.

Our aim was to change the API as little as possible. Therefore, the port number in the neat_open

call is used to distinguish between the caller and the callee by setting it to 0 or 1, respectively. A “lis-

tening” flow is created for both peers to function as a master for the other flows and, thus, for the data

channels.

An example application has been added in the public Github repository to show the approach10.

WebRTC Signaling Server: Establishing a WebRTC Peer-Connection between two peers requires a

third-party signaling channel to resolve how to establish the connection over the network. To es-

tablish a WebRTC Peer-Connection, both peers have to exchange their address candidates and their

connection parameters via SDP [24]. WebRTC does not specify a transport mechanism for the signal-

ing information. Since NEAT follows the approach to make the usage of transport protocols as easy

as possible for the application developers, it ships with an integrated signaling client, which may be

used. As an alternative to the integrated signaling client, application developers can integrate their

own signaling mechanism.

The integrated signaling client communicates via TCP with NEAT supporting signaling server, it

supports native NEAT clients as well as browser-based WebRTC clients via socket.io [9]. The sig-

naling uses the popular node.js [4] JavaScript framework and supports multiple platforms, including

FreeBSD, Linux and macOS.

Provided Transport Service Feature(s): There are no specific Transport Service Features associated

to this building block.

Related building blocks:

• NEAT Logic (§ 3.1.3).

• Happy Eyeballs (§ 3.3.1).
10https://github.com/NEAT-project/neat/blob/neat-rawrtc/examples/peer_webrtc.c

55 of 131 Project no. 644334

https://github.com/NEAT-project/neat/blob/neat-rawrtc/examples/peer_webrtc.c

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

3.2.3 Local flow priority

The NEAT System provides a way to prioritise the data transfer between NEAT Flows. This is performed

by assigning different priorities to the flows belonging to a certain flow group.

The rationale behind using flow groups is to couple flows that might share a bottleneck and control

their sending rate (either by scheduling or by setting the transport’s congestion window) in such a way

that they can achieve their share of bandwidth without necessarily competing with each other over

the available capacity. The decision to choose a certain flow group is taken at the API level and by the

user (e.g., for flows that share the same source and destination).

The flow group is an integer-type number that can be assigned to a certain NEAT flow and is speci-

fied by the user with aNEAT_TAG_FLOW_GROUP optional argument tag. NEAT flows with the same flow

group will be coupled together and their respective data will be transferred according to their relative

priority within the group, based on the underlying mechanism used at the transport protocol level.

This priority is defined by a float-type NEAT_TAG_PRIORITY optional argument tag. The optional ar-

guments are set using the NEAT_OPTARG_INT and NEAT_OPTARG_FLOATmacros respectively and are

passed to neat_open upon opening a NEAT flow.

Multiple flows can be created and be assigned the same flow group number. Let us assume that

the kernel supports the Coupled Congestion Control (CCC) mechanism [26], and that Happy Eyeballs

returns a TCP connection for each flow. In this case, the priorities are used to couple the congestion

controllers of NEAT flows (i.e., TCP connections) belonging to the same flow group by giving them

sending rates (i.e., congestion windows, cwnds) proportional to their priorities. If the kernel does not

support the CCC mechanism, or if Happy Eyeballs returns SCTP handles for some flows but TCP for

others, the priorities are ignored by NEAT and the cwnd values are determined by each flow’s conges-

tion control mechanism individually. The CCC mechanism is already implemented for the FreeBSD

kernel11.

When the transparent flow mapping feature (developed in WP3 and described in D3.2 [23]) is

supported and the value returned by happy-eyeballing uses SCTP, each NEAT flow is transparently

mapped into a SCTP stream within a SCTP association. As a result all NEAT flows using the same SCTP

association between the same end-points would use a common congestion controller. The priorities

are therefore translated into per-stream SCTP scheduling priorities as defined in [37]. If supported by

the SCTP stack, a weighted fair queueing scheduler (WFQ) between the SCTP streams is used. The

weight is configurable per outgoing SCTP stream. This scheduler considers the lengths of the mes-

sages of each stream and schedules them in a specific way to use the capacity according to the given

weights.

Deliverable D3.2 [23] elaborates on the underlying CCC mechanisms used for flow-group priori-

tised transfer for TCP and SCTP.

Some examples of the operation: Assume a scenario where there are two flows, one with

NEAT_TAG_PRIORITY of 0.75 starting at t = 3 s, and a second flow with NEAT_TAG_PRIORITY of

0.25 starting at t = 30 s, with both being assigned the same flow group NEAT_TAG_FLOW_GROUP as 1.

To test this, we adapted the tneat 12 traffic-generation tool to accept flow group priority and number

as command-line arguments as shown in Listing 21 (-w for priority and -g for flow group). Each

11Kernel support code is available at https://naeemk@bitbucket.org/naeemk/freebsd11-ccc.git.
12Tneat is presented in Deliverable D4.2 [14]. Code for the adapted version of tneat currently resides in

neat/examples/tneat_fg.c in the oystedal/dscp branch of the public NEAT code repository, at https://github.com/
NEAT-project/neat.

56 of 131 Project no. 644334

https://naeemk@bitbucket.org/naeemk/freebsd11-ccc.git
https://github.com/NEAT-project/neat
https://github.com/NEAT-project/neat

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

tneat_fg instance corresponds to a single NEAT flow and generates traffic by sending a certain number

of messages to a specified host (-n and -l specify the number and length of messages respectively).

1 #! /usr/bin/env sh

2 COUPLED_FLOWS=1

3

4 sleep 3

5 if [$COUPLED_FLOWS == 1]; then

6 ./neat/examples/tneat_fg -p 5001 -g 1 -w 0.75 -l 1000 -n 100000 10.0.0.5 &

7 sleep 30

8 ./neat/examples/tneat_fg -p 5002 -g 1 -w 0.25 -l 1000 -n 15000 10.0.0.5 &

9 else

10 ./neat/examples/tneat_fg -p 5001 -g 0 -w 1.0 -l 1000 -n 115000 10.0.0.5 &

11 fi

12

13 sleep 120

14 echo "$0 DONE"

Listing 21: Shell script using tneat_fg command-line with different priorities in a flow group.

Listing 22 shows how the flow group and priorities as well as the CCC algorithm

(newreno_afse) are passed to the NEAT System as optional arguments via neat_open, in

tneat_fg.c.

1 ...

2 static float config_priority = 1.0f;

3 static uint16_t config_group = 0;

4 ...

5 int

6 main(int argc, char *argv[])

7 {

8 ...

9 NEAT_OPTARGS_DECLARE(2);

10 NEAT_OPTARGS_INIT();

11 ...

12 while ((arg = getopt(argc, argv, "l:n:p:w:g:P:R:T:v:")) != -1) {

13 switch(arg) {

14 ...

15 case ’g’:

16 config_group = atoi(optarg);

17 break;

18 case ’w’:

19 config_priority = atof(optarg);

20 break;

21 ...

22 }

23 }

24 ...

25 if (config_active) {

26 if (config_group) {

27 NEAT_OPTARG_INT(NEAT_TAG_FLOW_GROUP, config_group);

57 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

Figure 9: The cwnd (in bytes) plot of two TCP flows using coupled congestion control with priorities
compared to a single TCP flow scenario. The aggregate line depicts the sum of cwnds in the two-flow
scenario.

28 NEAT_OPTARG_FLOAT(NEAT_TAG_PRIORITY, config_priority);

29 NEAT_OPTARG_STRING(NEAT_TAG_CC_ALGORITHM, "newreno_afse");

30 }

31 if (neat_open(ctx, flow, argv[optind], config_port, NEAT_OPTARGS,

NEAT_OPTARGS_COUNT) == NEAT_OK) {

32 neat_start_event_loop(ctx, NEAT_RUN_DEFAULT);

33 } else {

34 fprintf(stderr, "%s - neat_open failed\n", __func__);

35 result = EXIT_FAILURE;

36 goto cleanup;

37 }

38 }

39 ...

40 cleanup:

41 if (ctx != NULL) {

42 neat_free_ctx(ctx);

43 }

44 exit(result);

45 }

Listing 22: Assigning flow group, priority and CCC selection in tneat_fg.c.

Figure 9 presents the results obtained with the example in Listing 21, using a real-life test on a

10 Mbps bottleneck link with RTT=100 ms (typical for access link scenarios), with a FreeBSD machine

acting as the sender and using NewReno as the underlying TCP congestion control mechanism with

coupled congestion control enabled.

It can be seen in Figure 9 that between t = 30 s and t = 85 s (the duration when two flows coexist),

58 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

Table 1: Transport protocols and NEAT security in the Core Transport System prototype. All means all
the OSs supported by NEAT at the time of writing, as listed in § 2.1.1.

Security stack Implemented in OS platform

TLS/TCP/IP kernel all
DTLS/UDP/IP kernel all
DTLS/SCTP/IP kernel Linux and FreeBSD
DTLS/SCTP/IP user-space unsupported
DTLS/SCTP/UDP/IP kernel FreeBSD
DTLS/SCTP/UDP/IP user-space unsupported
SCTP/DTLS/UDP/IP (with WebRTC, see § 3.2.2) user-space all

flow 1 gets 3/4 of the cwnd while flow 2 gets 1/4 of the cwnd, on the average. This shows that the two

flows are coupled, because the coupling causes each to increase and decrease their cwnds at (close to)

the same time. Outside of this interval—when flow 2 either has not started yet or has terminated—flow

1 gets all of the cwnd.

Provided Transport Service Feature(s):

• NEAT flow group.

• NEAT flow priority.

Related building blocks:

• NEAT Logic (§ 3.1.3).

3.2.4 Security

The Security component of the NEAT System offers end-to-end transport security to NEAT applica-

tions, including encryption, integrity, and authentication. Applications that, for reasons of backwards

compatibility, cannot require full security may still utilize opportunistic security though this is not yet

available.

The NEAT System provides secure connections using the TLS [17] and DTLS [34] protocols. TLS

is used over TCP and DTLS for SCTP and UDP. As shown in Table 1, the possible combinations that

NEAT can provide are: TLS/TCP/IP, DTLS/UDP/IP, and DTLS/SCTP/UDP/IP or DTLS/SCTP/IP for a

kernel-level SCTP stack. The OpenSSL library [6] that offers TLS and DTLS support is used in the cur-

rent implementation. NEAT security components support TLS/TCP/IP and DTLS/UDP/IP on all sup-

ported OS platforms, as well as DTLS/SCTP/IP for a kernel-level SCTP stack on Linux and FreeBSD.

DTLS/SCTP/UDP/IP is supported on FreeBSD as well when the SCTP/UDP/IP combination is pro-

vided by the FreeBSD kernel. DTLS/SCTP/IP or DTLS/SCTP/UDP/IP for a user-space SCTP stack

requires properties currently not supported by OpenSSL, i.e., the BIO memory access interface for

OpenSSL [5] does not provide a message preserving memory access which is required by SCTP, fur-

thermore OpenSSL provides an interface that requires a kernel socket.

The use of the Security component depends on application requirements and configured policies.

Transport security can be configured in one of the following ways:

59 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

• A secure connection is requested including a certificate verification.

• A secure connection is requested without a certificate verification: a certificate verification will

not be performed.

• A secure connection is optional: if a secure connection cannot be established the NEAT System

will not return an error, instead it will establish a new insecure connection. This will add an

additional delay. This is currently not available but it is supported by the design.

• A non-secure connection is requested: this option will not involve the Security component.

This corresponds to two NEAT Flow properties:

• security: boolean indicating whether or not to use a secure connection.

• verification: must be verified, verification is optional, or do not verify. This property is only

relevant if a secure connection is used and defaults to true.

A list of trusted Certification Authorities (CA) is currently hardcoded using the Mozilla CA root

program data13. Future work should enable a trusted list to be specified as a policy. The server

certificates and private key files are set using neat_secure_identity and the function accepts

only the PEM format [12, 27, 28, 31]. SSL3 and RC4 ciphers are not allowed because they do not

meet current best practices for communications security. TLS and DTLS can be limited to adver-

tise and accept only certain TLS/DTLS versions and cipher suites—e.g., advertise only TLS 1.2 and the

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 cipher suite. The TLS/DTLS versions and cipher

suites to be accepted will be defined as policies. To extend the flexibility of the NEAT System, an appli-

cation may further limit or extend these lists for each individual request by setting the corresponding

NEAT Flow property. This is currently not implemented.

Security is added in the NEAT as an additional protocol above the operating system socket. The

NEAT Logic calls into the Security building block to perform data encryption and decryption before

data is written to/read from an operating system socket. During a connection establishment the Se-

curity building block performs TLS or DTLS handshake and certificate verification depending on ap-

plication requirements.

The NEAT System can be extended to use TCPINC [10] although this is not part of the project work.

Some examples of the operation: The security component is used automatically by the NEAT Logic

if a secure connection is required. An application needs to specify the corresponding property. List-

ing 23 shows a simple example of how to request a secure connection to a peer. This example is based

on Listing 17; an application only needs to change flow properties to request a secure connection.

1 int main(int argc, char *argv[])

2 {

3 if ((ctx = neat_init_ctx()) == NULL) {

4 debug_error("could not initialise context");

5 result = EXIT_FAILURE;

6 goto cleanup;

7 }

8

13https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/

60 of 131 Project no. 644334

https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

9 // new neat flow

10 if ((flow = neat_new_flow(ctx)) == NULL) {

11 debug_error("neat_new_flow");

12 result = EXIT_FAILURE;

13 goto cleanup;

14 }

15

16 char *config_property = "{\

17 \"transport\": [\

18 {\

19 \"value\": \"SCTP\",\

20 \"precedence\": 1\

21 },\

22 {\

23 \"value\": \"SCTP/UDP\",\

24 \"precedence\": 1\

25 },\

26 {\

27 \"value\": \"TCP\",\

28 \"precedence\": 1\

29 }\

30]\

31 \"security\": {\

32 \"value\": true,\

33 \"precedence\": 2\

34 }\

35 }";

36

37 // set properties

38 if (neat_set_property(ctx, flow, config_property)) {

39 fprintf(stderr, "%s - error: neat_set_property\n", __func__);

40 result = EXIT_FAILURE;

41 goto cleanup;

42 }

43 ...

Listing 23: Use of the NEAT Security componnent.

Provided Transport Service Feature(s):

• NEAT flow security.

Related building blocks:

• NEAT Logic (§ 3.1.3).

3.3 NEAT Selection Components

The NEAT Selection components provide functions that map the requirements provided by the ap-

plication to one or more transport endpoints and a set of transport components that can realise the

61 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

Algorithm 1 NEAT Happy Eyeballs Algorithm
1: procedure HAPPYEYEBALLSCOMPONENT(in listOfCandidates : list of transport solutions)
2: Require: listOfCandidates is sorted in priority order and len(listOfCandidates) > 0
3: currentCandidate← listOfCandidates.first()
4: repeat
5: if getPriority(currentCandidate) > 0 then
6: delta← convertToTimeInterval(getPriority(currentCandidate))
7: scheduleAt(now() + delta, doAsynchConnectionAttempt(currentCandidate, connectionCallback))
8: else
9: doAsynchConnectionAttempt(currentCandidate, connectionCallback)

10: end if
11: currentCandidate← listOfCandidates.nextCandidate(currentCandidate)
12: until currentCandidate = endOfList(listOfCandidates)
13: end procedure

14: procedure CONNECTIONCALLBACK(in candidate : transport solution, out connection : transport connection)
15: if connection 6= NONE then
16: policyManager.cacheResultConnectionAttempt(candidate, SUCCESS)
17: else
18: policyManager.cacheResultConnectionAttempt(candidate, FAILURE)
19: end if
20: end procedure

required Transport Service. These functions are provided now by the Happy Eyeballs (§ 3.3.1) and

Happy Apps (§ 3.3.2) components. While Happy Eyeballs provides the necessary transport selection

functionalities at the transport layer using the information provided by the transport, Happy Apps

provides a means for selection of appropriate protocol and configurations using feedback from the

application when such feedback is unavailable at the transport layer level.

3.3.1 Happy Eyeballs

The Happy Eyeballs (HE) building block is part of the NEAT User Module and comprises one of the

NEAT Selection components. A description of the main parts of this building block is the subject of an

IETF Internet Draft, authored by project participants [21].

In the first part of the NEAT selection process (i.e., steps 2–8 in Figure 4), the Policy Manager com-

bines requirements from an application obtained through the NEAT User API, with available transport

protocols, transport-protocol parameters, and feasible transport endpoints, i.e., IP addresses and port

numbers. Together, they are used to create a list of candidate transport solutions. Each transport solu-

tion on the list has a priority. The priority is a positive integer with zero being the highest priority. The

list is sorted in ascending order on the basis of the priority.

The pseudo-code for the Happy Eyeballs building block is presented in Algorithm 1. The com-

ponent takes as input the list of candidate transport solutions created in the first part of the NEAT

selection process. Next, it traverses the list and schedules for the transport solutions to be tried out

after a certain amount of time t has elapsed, governed by their priority p, as: t = p×∆, where ∆ is a fixed

time interval which has been heuristically determined. The transport solution which is able to estab-

lish a connection first, is the one selected by the Happy Eyeballs building block, and the one whose

handle is returned.

As remarked in RFC 6555 [42], a Happy Eyeballs algorithm should not waste networking resources

by routinely making simultaneous connection attempts. To this end, the Happy Eyeballs component

instructs the Policy Manager to cache the outcome of previous connection attempts. Cached connec-

tion attempts are valid for a pre-set time after which they become invalid and have to be repeated.

The caching lifetime is at present hardcoded to a fixed value, but the library will be updated so that

62 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

App. NEAT Server

Open

PM builds
candidate list

HE_T STCP
Open SCTP

SCTP INIT

TCP
Open TCP

SCTP INIT+ACK

TCP SYN

TCP SYN+ACK
SCTP success SCTP COOKIE-ECHO

Transport handle

TCP success

TCP ACK
Cache
Results

close TCP

TCP FIN

Figure 10: Message sequence chart illustrating the NEAT Happy Eyeballs transport selection process
when selecting between TCP and SCTP, with SCTP preferred.

this lifetime is part of the system configuration. Our experimental work [33] suggests a significant re-

duction in terms of CPU load with caching. We observed that the CPU load decreases linearly with

increasing cache hit-rate, and resulted in a more than 40% reduction of CPU load for unencrypted

traffic and almost a 20% reduction for encrypted traffic. In terms of memory, our work reported in [33]

concluded that Happy Eyeballs only has a marginal impact on kernel memory usage.

Some examples of the operation: As an example of how Happy Eyeballs works, consider the sce-

nario illustrated in Figure 10. Both the client and server support TCP and SCTP. The Policy Manager

puts together a list of candidate transport solutions. The NEAT Logic calls Happy Eyeballs, which tra-

verses the candidate list, and makes asynchronous connection attempts for each candidate transport

solution. Since the TCP transport solution has a lower priority than the SCTP transport solution, the

connection attempt for the TCP transport solution is delayed with respect to the one for SCTP. As de-

tailed before, the length of the delay depends on the priority. In the callback routine invoked when

a connection attempt returns, the outcome of the connection attempt (success or failure) is cached

by the Policy Manager through the Policy Interface. Since both connection attempts succeed, they

63 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

are cached as successful connection attempts. In the example depicted in Figure 10, the SCTP con-

nection attempt completes before the TCP connection attempt, and Happy Eyeballs returns the SCTP

connection.

Provided Transport Service Feature(s):

• NEAT selected transport protocol.

Related building blocks:

• NEAT Logic (§ 3.1.3).

• NEAT Policy Manager (via Policy Interface) (§ 3.4.1).

• Connect to a name (§ 3.1.4).

3.3.2 Happy Apps (application-level feedback mechanisms)

Happy Apps (HA) is part of the NEAT User Module and offers selection mechanisms when the un-

derlying transport protocol does not provide the signals required by the NEAT Logic. Non-connected

network transports such as UDP and UDP-Lite do not provide mechanisms via the socket API to sig-

nal if traffic is making it to the end host, instead it is up to the application-level protocol to decide if

it is “happy” with the current flows provided by the NEAT System. The application is the only entity

in a datagram transport using UDP(-Lite) that knows the reception state of the receiver, and hence

whether a path is operating as required.

The Happy Apps mechanisms allow applications to take advantage of network properties that

might not always work while still using the single NEAT User API.

Happy Apps can support fallback queries for different types of network issue, specified to NEAT

with policy requests. Currently QoS Fallback, further explained below, is specified and implemented

as a fallback mechanism in the NEAT System, but there are many possible Fallback Services an appli-

cation could subscribe to. Some examples are:

• Abstract QoS Fallback with DiffServ: The NEAT System offers a mechanism that allows the ap-

plication to signal its QoS requirements and match these to expected network support for QoS.

This can allow NEAT policy to be utilised to select the most appropriate DSCP marking (or other

QoS service). The mapping can take advantage of local configuration data, and QoS information

provided by the network. By providing fallback through potential candidates it can help ensure

that application traffic makes its way through the network with the most appropriate QoS avail-

able. This can be useful when a specific feature is blocked by some network boxes on the path.

Abstracting selection to the stack also allows the stack to utilise other path information that it

gathers (via a CIB source utilising the Policy Manager) to help make this selection, and enables

evolution of the selection process independent of the application code.

• Custom SDN Provisioning Requests: An application running in an SDN environment requires a

large amount of bandwidth to perform a backup operation. Depending on network load, either

the standard interface is used or a special link can be allocated. The application manages to

maintain the required rate at the start of the session, but the bandwidth falls off. When the

application signals it is “unhappy” to the NEAT System, the SDN Controller dynamically allocates

an assured link for the application to use.

64 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

• Firewall Traversal: An application requires a service that is operated behind a firewall that only

accepts admitted traffic. The application uses NEAT to connect to the firewall, but the traffic is

stopped, NEAT falls back to a protocol that supports negotiation with the firewall and authenti-

cates the application allowing traffic through.

The Happy Apps system is intended to be run throughout the application’s lifetime; path changes

that break certain network parameters can occur at any time. The NEAT System improves the API by

giving applications a way to keep flows alive with mostly automatic fallback.

It is important to note that the Happy Apps mechanism may not be able to make any further

changes to network parameters on behalf of the NEAT-based application, e.g., the application falls

through all the selected QoS values without finding one that satisfies its requirements. In this case HA

will remain in the final selected state until the application either decides to timeout and shutdown or

it attempts to vary parameters itself.

Abstract QoS: NEAT provides mechanisms for transports to use QoS within the network. QoS is im-

plemented in NEAT by setting the DSCP bits in the IP TOS field. Applications built with the socket

API can access this field via a setsockopt, NEAT exposes the QoS field directly in the NEAT Flow and

handles parameter setting in the socket stack on behalf of the application.

Applications using NEAT can set a DSCP value directly or they can use the Abstract QoS facilities

offered by the NEAT System. NEAT offers abstract QoS types to give application developers access to

QoS with a higher level API.

The abstract QoS values in NEAT allow application developers to request a QoS service which is

comparable to the requirements of the application they are building. Rather than an application de-

veloper directly requesting a code point such as EF (Expedited Forwarding), with the NEAT System

an application developer can request a high level NEAT_QOS_AUDIO_H1 (a class representing high

bandwidth audio traffic) and the NEAT System will preform the mapping down to the concrete QoS.

NEAT Abstract QoS uses the Policy Manager when mapping between the Abstract QoS value and

the concrete DSCP mark to be used for the packet. Selection with the Policy Manager allows the NEAT

System to offer dynamic mapping from abstract to concrete QoS while using information generated

by other flows. Table 2 shows the default map from abstract QoS to concrete DSCP values in the NEAT

System.

Some examples of the operation: As an example of how Happy Apps works, consider an application

that requests QoS on a network path which drops all traffic marks with the AF4x DSCP. The NEAT ap-

plication requests a NEAT Abstract QoS service of NEAT_QOS_INTERACTIVE_VIDEO_H1 (Interactive

Video, High Bandwidth) and sets the feedback_query callback. The Policy Manager evaluates the

requested QoS and generates a concrete mapping to a code point, for this example AF41.

The NEAT System automatically adds the QoS fallback property, and sets up the Happy Apps mech-

anism because the application has requested an abstract QoS type.

NEAT Logic sets the resolved DSCP on the socket underlying the application’s NEAT flow. Each

datagram generated by the application via neat_write will generate an IP packet with the specified

DSCP set. The NEAT Application can now work through its own protocol, reading and writing against

the NEAT flow as desired.

The feedback_query callback will be triggered by the NEAT System when the feedback query

interval time expires, by the default policy triggers this after around 1 second. The NEAT Application

65 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

Table 2: Possible Abstract QoS to DSCP Mappings in NEAT. Some traffic classes such as Video can
have several different capacity requirement levels, the NEAT System exposes these with Very Low, Low,
Medium and High capacity requirements. Applications can also request Admitted access, classes that
can be guaranteed by the network with policy or dynamic provisioning.

Abstract Name DSCP Code DSCP Value

NEAT_QOS_AUDIO_VL CS1 0x08
NEAT_QOS_AUDIO_L DF 0x00
NEAT_QOS_AUDIO_M1 EF 0x2E
NEAT_QOS_AUDIO_H1 EF 0x2E
NEAT_QOS_INTERACTIVE_VIDEO_VL CS1 0x08
NEAT_QOS_INTERACTIVE_VIDEO_L DF 0x00
NEAT_QOS_INTERACTIVE_VIDEO_M1 AF42 0x24
NEAT_QOS_INTERACTIVE_VIDEO_M2 AF43 0x26
NEAT_QOS_INTERACTIVE_VIDEO_H1 AF41 0x22
NEAT_QOS_INTERACTIVE_VIDEO_H2 AF42 0x24
NEAT_QOS_NON_INTERACTIVE_VIDEO_VL CS1 0x08
NEAT_QOS_NON_INTERACTIVE_VIDEO_L DF 0x00
NEAT_QOS_NON_INTERACTIVE_VIDEO_M1 AF32 0x1C
NEAT_QOS_NON_INTERACTIVE_VIDEO_M2 AF33 0x1E
NEAT_QOS_NON_INTERACTIVE_VIDEO_H1 AF31 0x1A
NEAT_QOS_NON_INTERACTIVE_VIDEO_H2 AF32 0x1C
NEAT_QOS_DATA_VL CS1 0x08
NEAT_QOS_DATA_L DF 0x00
NEAT_QOS_DATA_M1 AF11 0x0A
NEAT_QOS_DATA_H1 AF21 0x12
NEAT_QOS_BROADCAST CS3 0x18
NEAT_QOS_REALTIME_INTERACTIVE_DATA CS4 0x20
NEAT_QOS_IMMERSIVE_AUDIO AF41 0x22
NEAT_QOS_IMMERSIVE_VIDEO AF41 0x22
NEAT_QOS_STREAMING AF31 0x1A
NEAT_QOS_BACKGROUND CS1 0x08
NEAT_QOS_ADMITTED_AUDIO EF 0x2E
NEAT_QOS_ADMITTED_VIDEO AF42 0x24
NEAT_QOS_ADMITTED_IMMERSIVE_AUDIO AF42 0x24
NEAT_QOS_ADMITTED_IMMERSIVE_VIDEO AF42 0x24
NEAT_QOS_ADMITTED_DATA AF42 0x24

must service the callback based on its own state. Because the network drops the traffic from the NEAT

Application, the application cannot say it is “happy” with the current setup and returns NEAT_ERROR.

NEAT Logic receives the negative application feedback, the established DSCP mark is fed into the

Policy Manager so that signal can be used to avoid this for any later connections. The NEAT Logic

requests another concrete DSCP mark to use for the flow, in this example the next mark to try is AF31.

The application continues to perform writes with the new QoS value, this time the mark is able to

transverse the network. The feedback_query callback is triggered again, this time the application is

seeing return data from its peer and is able to signal success by returning NEAT_OK.

Provided Transport Service Feature(s):

• NEAT flow DSCP Support.

66 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

Connection
Selection

(async access)

R
E
S
T
 A

P
I

Po
lic

y
 M

a
n
a
g

e
r

Profiles

Characteritics
Information

Base

1
.
A

p
p
lic

a
ti

o
n
 r

e
q
u
e
st

 p
ro

p
e
rt

ie
s

3. Matched
CIB

candidates

2. Updated
request

properties

4. Updated
PIB

candidates

Policies

Connection handle

Policy
Information

Base

5. Ranked
candidates

Figure 11: NEAT Policy components and their interactions.

Related building blocks:

• NEAT Logic (§ 3.1.3).

• NEAT Policy Manager (via Policy Interface) (§ 3.4.1).

3.4 NEAT Policy Components

The NEAT Policy components allow the definition of policies which shape the attributes and con-

straints of each new given NEAT, flow based on the properties requested by applications as well as

known system and network characteristics. As a result the NEAT System can seamlessly adapt to a

wide range of scenarios using administrative policies as well as information collected about the host

and the attached networks.

The Policy components are comprised of the following building blocks, depicted in Fig. 11 and

described in the sequel:

• Policy Manager (PM).

• Policy Information Base (PIB).

• Characteristics Information Base (CIB).

For each new connection requested by a NEAT-enabled application, the PM is responsible for gen-

erating a list of candidate transport solutions which meet the requirements defined by the application.

To this end, the PM takes into account all known information about the network stored in the CIB as

well as any applicable policies defined in the PIB.

The CIB acts as a repository storing information about available interfaces, supported protocols,

network properties and current/previous connections between endpoints (generated from passively

or actively acquired network metrics—see CIB sources in § 3.4.3).

The PIB acts as a repository that contains a collection of policies, where each policy consists of a

set of rules linking a set of matching requirements to a set of preferred or mandatory transport charac-

teristics. Policies can be added by the system administrator, external entities or applications, and have

67 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

Policy Manager

Application
properties

Policies /
profiles CIB nodes

Candidate
transport
solutions

PM output:
ranked list of JSON objects containing

NEAT properties of candidates

PM inputs:
NEAT Properties,

encoded as JSON objects

Figure 12: Policy Manager inputs and outputs.

different priorities. In addition to policies the PIB also contains so-called profiles, which are policies

that are applied before the CIB lookup. Profiles are typically used to translate high-level properties

into sets of concrete, low-level properties. Besides the time point of execution, policies and profiles

are functionally identical.

The CIB and PIB entries are parsed to compute a list of potential candidates where each candi-

date contains an interface to be used, the transport protocol and associated options as well as other

characteristics of the network.

The PM is responsible for implementing a strategy which (as far as possible) satisfies the given

application requirements and installed policies while taking into account the knowledge about the

available network resources. To achieve this the PM needs to prioritise and resolve any conflicting

policies, adapting them to changing network information. The PM may optionally manage thresholds

for when a CIB change triggers a new policy. Policies do not update within a NEAT Flow’s lifetime, the

PM is invoked only when a new NEAT Flow starts.

3.4.1 NEAT Policy Manager

The NEAT Policy Manager compiles all policies available at the host into a single set of valid rules.

Conflicting policies are resolved based on the priority of categories: the application local policies over

the global policies and external system policies over NEAT System policies. Global NEAT policies are

combined during NEAT initialisation and serve as the default. Application local policies override the

default policies only for the application by which these were installed. There is no lifetime associated

with policies. They do not expire and have to be explicitly removed. For each application the set of

valid rules compiled from policies is static and will not be changed during runtime. The PM may op-

tionally implement some level of access control. If more NEAT components require this functionality

the addition of a NEAT-wide AAA building block may be considered. The NEAT Policy Manager can

expose diagnostic information about the installed and/or active policies. These statistics may be bun-

dled with output from the NEAT Flow Endpoint Statistics (§ 3.1.5), together with statistics from CIB, to

enable useful debugging.

Figure 12 summarises several concepts behind the operation of the PM, further developed below.

PM inputs: The PM requires three types of inputs:

68 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

• Application properties: an array of NEAT properties (see below) describing the attributes that a

NEAT-enabled application desires for a newly opened NEAT Flow. The PM uses the approach

described in this section (under Some examples of the operation, below) to extract the most

suitable candidates for the property requirements. The NEAT property array is passed to the

Policy Manager by the NEAT Logic through the Policy Interface.

• Policies: they are installed by OS developers, vendors or applications into a predefined location

in the file system, or transferred through the PM REST API. Profiles are a special type of poli-

cies which are used to expand high-level properties into more concrete properties before the

CIB lookup. Policies and Profiles use an identical syntax using the JSON format [18] (the policy

format is described in § 3.4.2).

• CIB nodes: they provide information about transport and interface characteristics in a prede-

fined location in the file system or transferred through the PM REST API. Each CIB node is gener-

ated and maintained by so-called CIB sources, which may be system local or remote (§ 3.4.3). The

CIB repository is generated by all available CIB nodes which form a graph structure. Effectively

the CIB expands the branches of this structure to create rows containing potential connection

candidates.

PM outputs: The output of the PM is a ranked JSON list containing a set of candidate transport solu-

tions and parameters for use by the NEAT Logic. Each candidate is an array of NEAT properties. Each

candidate includes at least the local interface, the local and remote IP addresses and ports and the

transport protocol. In addition, each candidate in the output list contains information indicating:

• Which application requirements (properties) are satisfied for the given interface/protocol/des-

tination tuple.

• Which of the properties specified by the related evaluated policies have been verified and applied

(added to the candidate).

• Which of the properties specified by the related evaluated policies the PM was not able to verify.

NEAT Properties: The NEAT policy system is based around the notion of NEAT properties. These

are essentially key|value pairs describing attributes used by the components of the NEAT Policy

Manager. NEAT properties are used to express attributes describing the local host and the attached

networks, user requirements, or constraints imposed by policies. Examples include interface names,

types, supported protocols and parameters, or topology metrics (e.g., available bandwidth).

Each property has a key string and a value. Currently property values can be:

1. A single boolean, integer, float or string value, e.g., 2, true, or "TCP".

2. A set of values: [100, 200, 300, "foo"].

3. A numeric range: {"start":1, "end":10}.

4. ANY value: null.

Each property is further associated with a precedence which identifies the “importance” of the

property. Specifically, the precedence indicates if the property may be modified by the Policy Manager

logic or if it is immutable. Currently two property precedence levels are defined in order of decreasing

priority:

69 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

[immutable] (precedence 2): These are mandatory properties which value cannot be changed.

(requested) (precedence 1): These are optional properties whose value may be overwritten. A mis-

match of such properties will result in a penalty in the ranking within the PM. Such penalties are

recorded as the score of the property.

The property’s numeric score attribute is used to indicate the weight of the property with respect

to other properties. Whenever two properties are compared and match, the score of the result is the

sum of the individual scores. As a consequence the PM can use the score to determine the most suit-

able NEAT connection candidate for a given request.

In the sequel we use the following shorthand notation: property key/value pairs are separated by

the | character and indicate the property’s precedence by the bracket types shown above. We append

the score to the brackets and omit it if zero. For example

• [transport|TCP]+2: the transport protocol must be “TCP”

• (MTU|1500,2000,9000): one of the specified MTU values should be chosen if possible

• (capacity|10-1000)+1: the interface capacity should be within the numeric range specified

by the integers

Property Operators:

1. Comparison: p1 == p2

Any two NEAT properties are considered equal if their keys are identical and the intersection of

their values is a non-empty set. Precedence and scores are ignored when testing for equality. A

comparison — or match — of two properties yields a boolean result.

For instance, the operation [transport|TCP]+1 == (transport|TCP)+3 yields true. Set

and range value attributes are also considered equal if their values overlap, i.e., the expressions

[transport|TCP,UDP,MPTCP] == [transport|TCP], or[latency|1-100]==[latency|55]

both return true.

2. Update: p1 <= p2

In the lookup workflow in the PM, properties from various sources will be compared and po-

tentially updated. Updates are the mechanism used to filter candidates which violate policies

or contradict information stored in the CIB. Essentially, an update is successful if the property

value of the involved properties do not contradict each other.

More specifically we use the following rules. A property may only be updated by another prop-

erty with the same key. A property’s value may only be updated by another property whose

precedence is greater or equal than itself — in which case it inherits the precedence of the up-

dating property — and if both properties are not immutable (highest precedence). A property

update succeeds if the ranges of the associated properties overlap — the resulting updated prop-

erty will contain the intersection of the two ranges. Otherwise, if the above conditions are not

satisfied, the update will fail. If the property is part of a PropertyArray a failed property update

will invalidate the entire associated candidate.

As an example, if the immutable property [transport|TCP]+2 is requested by an application

and this property clashes with the property [transport|UDP] in a certain connection candi-

date, the candidate will be discarded.

70 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

JSON Encoding: The Policy Manager uses JSON to represent NEAT Properties. As an example, the

property [transport|TCP, SCTP]+3 is encoded as follows:

"transport": {

"value": ["TCP", "SCTP"],

"precedence": 2,

"score": 3

}

The property (latency|1-100) is encoded as:

"latency": {

"value": {"start":1, "end":10}

}

If any property attribute is omitted, the following default values will be used:

"value": null, "precedence": 2, "score": 0, "evaluated": false.

For all externally facing interactions with the PM, NEAT properties are encoded as a JSON object.

An example request containing multiple properties is encoded as:

1 {

2 "domain_name" : {"value": "www.google.com", "precedence": 2},

3 "port": {"value": 80, "precedence": 2},

4 "local_interface": {"value": "eth0"},

5 "local_ip": {"value": "10.10.2.14", "precedence": 2},

6 "transport": {"value": "TCP", "precedence":2, "score":2},

7 "MTU": {"value": [1500,2000,9000]},

8 "capacity": {"value": {"start":10, "end":1000}, "score":1}

9 }

Listing 24: JSON encoded PM query.

NEAT PropertyArrays: A NEAT PropertyArray is a simple object containing a set of NEAT properties.

These objects are used to represent application requests received through the NEAT User API as well

as the connection candidates generated by the PM as the request traverses the PM logic.

An example of the simplest encoding of a PropertyArray containing a set of properties looks as

follows:

1 [{

2 "remote_ip": {"precedence": 2,"value": "10.54.1.23"},

3 "port": {"precedence": 2, "value": 8080},

4 "transport": {"value": "reliable"},

5 "MTU": {"value": [1500, 9000]},

6 "low_latency": {"precedence": 1, "value": true}

7 }]

To compactly express arrays with multiple property sets, PropertyArrays themselves may be com-

prised of several arrays containing one or more objects (MultiPropertyArrays). In this case, an expand

71 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

Table 3: REST API endpoints for external access to the Policy Manager.

REST resource HTTP method Description

/pib GET lists all policies installed in the host
/pib/{uid} GET/PUT retrieve or upload a policy with a specific Unique Identifier (UID)
/cib GET lists all CIB nodes installed in the host
/cib/{uid} GET/PUT retrieve or upload a CIB node with a specific UID
/cib/rows GET retrieve all rows of the CIB repository

operator yields the Cartesian product of all contained objects. For instance, a PropertyArray P con-

taining the NEAT Properties pa, p1, p2, p3, p4 defined as P = [[{pa}], [{p1, p2},{p3, p4}]] expands to two

PropertyArrays [{pa, p1, p2}] and [{pa, p3, p4}]. Thus, MultiPropertyArrays may be used in policies and

CIB nodes to generate multiple outputs from a single entry.

Policy Interface (PI): The Policy Interface exposes a set of programming function calls that NEAT

components may invoke to make requests to the NEAT Policy Manager. The JSON format was selected

for the Policy Interface to achieve a decoupling of the PM from the rest of the NEAT System. The PM

components described in this section may become optional or may even be executed outside the host

using them in a future version of the NEAT System, e.g., for resource-constrained mobile devices.

The communication interface between the Policy Manager and other NEAT components is cur-

rently implemented using Unix domain sockets. The socket neat_pm_socket is used to receive re-

quests from the application and serve back a list of connection candidates to the NEAT Logic. The

application request is passed as a string containing a JSON object with a set of NEAT properties, as

given in Listing 24. The request should at least contain a destination DNS name and port, or a desti-

nation IP, destination port, and a local interface and IP.

Similarly, the PM response contains a configurable number of candidates encoded as a JSON list,

wherein each list element is a JSON object containing the properties associated with a particular can-

didate. The list is ordered by the total score of all candidate properties.

Two additional Unix sockets, neat_pib_socket and neat_cib_socket, are available for adding

new policies and CIB nodes to the PIB and CIB respectively (in addition to the filesystem interface).

Additionally, the PM exposes a REST API intended to allow external applications, such as SDN con-

trollers, to query the contents of the PIB/CIB and to populate these with new entries. If this optional

API is started, the PM starts listening for HTTP connections on a predefined port (45888 by default).

Applications may then access the addresses listed in Table 3 using HTTP’s GET/PUT semantics (using

JSON):

Some examples of the operation: An example of the current Policy Manager workflow is given below.

Please refer to Fig. 11.

1. The Policy Manager receives a query from the NEAT Logic through the Policy Interface. The

query contains a list of properties (compiled in JSON format) originating from the application

requirements and the NEAT Logic (e.g., DNS lookup result) (see step 1. in Fig. 11). An example

is provided in Listing 24.

72 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

2. The PM queries the PIB for profiles, which are used to map high level properties, such as

bulk_transfer|True, to one or more concrete properties, such as

interface|eth0, and wireless|False (step 2. in Fig. 11).

3. The PM performs a CIB lookup and receives an initial set of transport option candidates which –

as far a possible – fulfil the query properties (i.e., by filtering the CIB by available interface types,

path characteristics over relevant interfaces). Each candidate is a PropertyArray containing the

matched query properties as well as the associated properties of the potential connection, e.g.,

supported interface features, TCP variants, cached remote endpoint capabilities, (step 3. in

Fig. 11). See also § 3.4.3 for more details.

4. For each candidate the PM performs a PIB lookup. The lookup yields a set of candidates to

which any matching policies have been applied (step 4. in Fig. 11). Each policy may extend

the candidate PropertyArray with additional (optional or mandatory) properties defined by the

policy. Any candidate which contradicts any mandatory policy properties is eliminated by the

PM. See § 3.4.2 for more details.

5. The PM ranks the candidates based on the total score of the individual candidate properties.

Finally the ranked candidate list is returned to the NEAT Logic (step 5. in Fig. 11). This informa-

tion is used by the NEAT Logic to carry out the final connection selection.

Provided Transport Service Feature(s): While it does not actively offer any Transport Service Fea-

ture, this building block is indirectly involved in providing many Transport Service Features by other

building blocks—e.g., Selection of a secure interface, NEAT flow delay budget, NEAT flow low latency,

etc. can be mapped to policy attributes and combined into rules to define appropriate policies.

Related building blocks:

• PIB (§ 3.4.2).

• CIB (§ 3.4.3).

3.4.2 Policy Information Base (PIB)

This building block defines the PIB repository that stores policies in the NEAT System and is accessed

by the Policy Manager.

NEAT Policies: Recall that a candidate is an object containing an arbitrary number of NEAT prop-

erties. NEAT policies are objects which append/update NEAT properties to connection candidates

in order to enforce or express the desire for a specific behaviour. Each policy contains two essential

keys: match and properties, as well as a number of meta attributes such as uid, priority or

description. Policies are stored in the PIB repository.

Essentially NEAT policies are based on the following logic:

MATCH <set of properties to match against> → PROPERTIES <set of mandatory

or optional properties appended to flow candidate>.

The list of match conditions always implies that conditions are evaluated by performing an AND

operation, i.e., all conditions must be true for the policy to be triggered. To define an OR relationship

between conditions, multiple policies with a different set of conditions must be created.

73 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

Table 4: Policy object keys.

Key Description

uid unique identifier for the policy (default: random UID)
priority policies with the lowest priority are applied first (default: 0.0)
description human readable description (default: "")
policy_type either policy (default) or profile
replace_matched if true the matched properties will be removed from the candidate

prior to applying the policy properties (default: false)
match properties that trigger the policy (default: any)
properties policy properties which will update or be appended to the candidate

(default: null set)

Table 4 provides a description of the policy object keys. If any of the above keys is omitted, its

default value will be used.

• The value of the match key is an object which contains a set of properties that trigger the policy.

A policy is triggered only if all of the match properties are contained within the input candidate,

i.e., the set of candidate properties is a superset of the set of match properties. If the match key

is empty or missing, the policy will match any candidate.

• The value of the properties key is a PropertyArray object (§ 3.4.1) which contains a set of

properties that should be appended to the connection candidate, if the policy is triggered. To

this end, the candidate properties are updated/appended by the policy properties specified in

the properties object. Specifically, a candidate property will be updated (see NEAT operators in

§ 3.4.1) by a policy property if it has the same key. If a policy property’s key is not already in the

set of candidate properties the property will be appended to the set.

The NEAT Policy Manager uses JSON to encode policies. An example of a simple JSON policy is

given in Listing 25.

1 {

2 "description":"TCP specific low latency profile",

3 "uid":"low_latency_tcp",

4 "priority": 3,

5 "replace_matched": true,

6 "match": {

7 "low_latency": {"value": true},

8 "transport": {"value": "TCP"}

9 },

10 "properties": {"transport": { "value": "TCP", "precedence": 2},

11 "SO/SOL_SOCKET/TCP_NODELAY": { "value": 1, "precedence": 1}}

12 }

Listing 25: JSON encoded policy.

NEAT Profiles: Profiles exhibit an identical behaviour to policies but are applied earlier — at the

beginning of the workflow, before the CIB lookup (see Figure 11). The motivation is to allow the system

to expand/map abstract properties (e.g., low latency, reliable transport), from a API request to one

74 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

or more concrete properties appropriate to the host on which the PM is running. Logically profiles

belong to the PIB.

PIB Scope: We consider the following policy categories, each forming a separate PIB domain:

• Global NEAT: generic set coming from NEAT operations. It can only change (extended in order

not to break compatibility) at the next update of the NEAT System.

• Application specific: set by each application (e.g., Mozilla Firefox). It can only change at the next

update or installation of the application which it belongs to.

• Operating system specific: set by OS (e.g., Linux, FreeBSD, . . .). It can only change at the next

update or installation of the OS.

• Vendor specific: set by the end-host manufacturer (e.g., a handset maker). It can only change at

the next update of the firmware on the end host.

In the current PIB implementation policies are stored as files in a predefined directory. The default

locations for the policy files on Linux/Unix are:

• /etc/neat/policy/OS/

• /etc/neat/policy/vendor/

• /etc/neat/policy/application/

• $HOME/.neat/policy/application/

The path configuration may be changed by the administrator at startup of the PM.

The PM imports all files into the PIB and maintains data structure for lookups. Note that PIB files

are not intended to be accessed directly by NEAT components, but only through the Policy Interface.

Read/write access to the PIB/CIB information is implemented using standard OS user/access mecha-

nisms, Unix sockets, or through the PM REST API.

Optionally, the internal state of the PM may be exposed through an entry in procfswhen available

in Linux-like OSes (or a similar interface in other OSes).

Provided Transport Service Feature(s): There are no specific Transport Service Features associated

to this building block.

Some examples of the operation: A sample of the proposed policy file format is given in Listing 26.

1 {

2 "uid":"low_latency",

3 "description":"low latency profile",

4 "priority": 1,

5 "replace_matched": true,

6 "match":{

7 "low_latency": {

8 "precedence": 1,

9 "value": true

10 }

75 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

11 },

12 "properties":{

13 "RTT": {

14 "precedence": 1,

15 "value": {"start":0, "end":50},

16 "score": 5

17 },

18 "low_latency_interface": {

19 "value": true, "precedence": 1},

20 "is_wired_interface": {

21 "value": true, "precedence": 2}

22 }

23 }

Listing 26: Policy file example.

Related building blocks:

• NEAT Policy Manager (§ 3.4.1).

3.4.3 Characteristics Information Base (CIB)

The Characteristics Information Base (CIB) is a repository that stores information about hosts (e.g.,

available interfaces, supported protocols), connections (e.g., parameters used by previously estab-

lished transport sessions, hosts currently communicating) and the network (e.g., path properties). CIB

entries provide measured information, protocol details and capabilities about network entities used

in the NEAT System, specifically in the policy decision phase.

The CIB is populated from multiple inputs generated by so-called CIB sources, such as components

of the NEAT System or external applications. A CIB source is defined as any module which provides

an input for the CIB in the correct format accepted by the CIB. Each CIB source generates CIB nodes,

which are JSON data objects used to populate the CIB, comprised of a set of attributes for a given

resource. CIB sources may populate the CIB through two methods: by creating files stored in a pre-

defined folder in the host’s filesystem, the location of which is OS dependent, or through a REST API

listening on a port of the host.

Some mechanisms to populate the CIB are already implemented in OSes as statistics/measure-

ment tools and will be made available as default CIB sources. Another class of CIB sources is provided

by NEAT building blocks such as Happy Eyeballs (§ 3.3.1) which store discovered transport protocols

and parameters supported along paths in the CIB for future reuse. External CIB sources may be pro-

vided as helper applications by device and OS vendors or third parties developing modules for active

or passive measurements, statistics and metadata collection.

The PM uses a pull mechanism to access any information stored in the CIB whenever a new NEAT

Flow is initiated.

In the initial CIB implementation, trust is managed by relying on existing OS roles and permissions:

CIB sources are allowed to create and update files in the CIB repository folder as long as the OS user

executing the task is allowed to write in that folder. Future versions of the CIB may switch to a more

complex authentication and trust management method.

76 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

CIB architecture: Each entry or row of the CIB is comprised of an arbitrary number of NEAT Proper-

ties. Rows are composed from one or more CIB nodes represented as JSON objects — and, e.g., stored

as files in the CIB directory or received through the REST API. These JSON objects are generated by

various helper applications called CIB sources. A simple example of the CIB node defining a local in-

terface is given in Listing 27.

1 {

2 "uid": "eth0",

3 "root": true,

4 "expire": -1,

5 "priority": 4,

6 "properties": {

7 "interface": {"value": "eth0", "precedence":2},

8 "capacity": {"value": 10000, "precedence":2},

9 "local_ip": {"value": "10.10.2.1", "precedence":2},

10 "is_wired": {"value": true, "precedence":2},

11 "MTU": {"value": {"start":50, "end":9000}}

12 }

13 }

Listing 27: Example CIB node, showing the CIB format.

Each CIB node includes a uid key and a set of properties to be included in the CIB row.

Extending existing CIB Nodes: Additionally, CIB sources may generate CIB nodes which reference

and extend pre-existing CIB nodes. This feature is used to inject network characteristics collected by

external sources (e.g., controllers). For example, the following two CIB nodes, in Listings 28 and 29

reference the node defined in Listing 27:

1 {

2 "uid": "eth0_remote_1",

3 "description": "information about remote endpoint 1",

4 "priority": 2,

5 "link": true,

6 "match" : [

7 {"uid": {"value": "eth0"}}

8],

9 "properties": {

10 "remote_ip": {"value": "8.8.8.8", "precedence":2, "score": 2},

11 "remote_port": {"value": "80", "precedence":2, "score": 1}

12 }

13 }

Listing 28: Example of CIB node referencing the node in Listing 27. Referencing is done via the uid

value in the match attribute (eth0).

1 {

2 "uid": "eth0_remote_2",

3 "description": "information about remote endpoint 2",

4 "priority": 2,

5 "link": true,

77 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

6 "match" : [

7 {"interface": {"value": "eth0"}, "local_ip": {"value": "10.10.2.1"}}

8],

9 "properties": {

10 "remote_ip": {"value": "8.8.4.4.", "precedence":2, "score": 2},

11 }

12 }

Listing 29: Example of CIB node referencing the node in Listing 27. Referencing is done via the

interface and local_ip properties in the match attribute (eth0).

If a CIB node contains a link attribute that is set to true the CIB will attempt to match any prop-

erty or uid listed in the match attribute, and will append the new properties to the corresponding CIB

node. Both examples above will be linked to the interface eth0, defined in the first CIB node. To refer-

ence multiple CIBs, the match attribute list can contain multiple JSON objects. The priority attribute

is used to resolve overlapping properties.

Essentially, the CIB internally constructs a directed graph using all available CIB nodes. To generate

the CIB rows, the graph is resolved starting at each node which has the attribute root set to true (see

CIB node in Listing 27), generating paths (i.e., rows) by traversing the graph in the reverse direction of

the edges.

Hence, from the above CIB nodes the CIB will generate the following two rows:

1

2 1: {"interface": {"value": "eth0", "precedence":2}, "capacity": {"value": 10000, "

precedence":2}, "local_ip": {"value": "10.10.2.1", "precedence":2}, "is_wired":

{"value": true, "precedence":2}, "MTU": {"value": {"start":50, "end":9000}, "

remote_ip": {"value": "8.8.8.8", "precedence":2, "score": 2}, "remote_port": {"

value": "80", "precedence":2, "score": 1}}

3

4 2: {"interface": {"value": "eth0", "precedence":2}, "capacity": {"value": 10000, "

precedence":2}, "local_ip": {"value": "10.10.2.1", "precedence":2}, "is_wired":

{"value": true, "precedence":2}, "MTU": {"value": {"start":50, "end":9000}, "

remote_ip": {"value": "8.8.4.4.", "precedence":2, "score": 2}}

Listing 30: CIB rows generated from the CIB nodes defined in Listings 27 to 29.

Extending CIB Rows: Finally, CIB sources have the option of generating CIB nodes which augment

existing CIB rows with additional properties. This can be useful to annotate specific CIB rows with

historical information, e.g., collected from previous connections. To achieve this the link attribute is

set to false:

1 {

2 "uid": "historic info",

3 "description": "appended properties to CIB rows matching all match properties.",

4 "priority": 10,

5 "timstamp": 1476104788,

6 "link": false,

7 "match": [

8 { "interface": {"value": "eth0"},

9 "local_ip": {"value": "10.10.2.1"},

78 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

10 "remote_ip": {"value": "8.8.8.8"}}

11],

12 "properties": [{

13 "remote_port": {"value": 8080, "precedence":1},

14 "local_port": {"value": 56674, "precedence":1},

15 "transport": {"value": "TCP", "precedence":1},

16 "cached": {"value": true, "precedence":2, "score":5},

17 "cache_ttl": {"value": 300, "precedence":1},

18 "cache_status": {"value": "connection_success", "precedence":2, "description"

:"could be failed, NA, etc."}

19 }]

20 }

Listing 31: Extending CIB rows: any row matching all properties in the match attribute will be

augmented with the properties in the properties attribute. In this example row 1 in Listing 30.

For this example the CIB will match row 1 in Listing 30 (i.e., the one with the remote_ip property

set to 8.8.8.8), and insert a new row which includes the additional properties.

1 3: {"interface": {"value": "eth0", "precedence":2}, "capacity": {"value": 10000, "

precedence":2}, "local_ip": {"value": "10.10.2.1", "precedence":2}, "is_wired":

{"value": true, "precedence":2}, "MTU": {"value": {"start":50, "end":9000}, "

remote_ip": {"value": "8.8.8.8", "precedence":2, "score": 2}, "remote_port": {"

value": 8080, "precedence":1}, "local_port": {"value": 56674, "precedence":1}, "

transport": {"value": "TCP", "precedence":1}, "cache_ttl": {"value": 300, "

precedence":1}, "cached_connection_status": {"value": "success", "precedence":2,

"score":5}}

Listing 32: CIB row 1 extended by the CIB node defined in Listing 31.

CIB nodes are dynamic, in the sense that they can be continuously updated—e.g., by a module

monitoring the local OS capabilities or an external SDN controller. Further, whenever a new NEAT

Flow is established, the Happy Eyeballs module caches the properties of the selected candidate by

generating a corresponding CIB node referencing a local interface. These cache entries expire after a

fixed time once the connection has been closed (time to live, TTL). The value of the TTL for remote

CIB entries will be defined based on the initial experiences with the PM.

CIB lookup workflow: CIB lookup requests are arrays of NEAT properties including the address of

the NEAT destination. Within the PM the request will contain the application requirements as well as

any properties appended by the profile PIB. For each lookup request, the CIB compares the properties

in the request against the properties contained in each row of the CIB. The lookup is successful when-

ever all required (precedence: 2) request properties match the properties in a CIB row. In this case,

the properties of the corresponding CIB row are appended to the request, and the resulting property

array becomes a candidate.

As a result, after the CIB lookup, the PM receives a list of candidates which fulfill the application

requirements as well as the constraints and attributes imposed by the local system and the attached

networks stored in the CIB. Candidates are ranked by the sum of the scores of the individual properties.

However, only candidate properties which have been evaluated (i.e., matched) during the lookup are

used to calculate the score, in order to ensure that properties about which nothing is known to the CIB

79 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

do not influence the ranking. Figure 4 illustrates how the CIB lookup process fits within the overall PM

workflow.

Examples of NEAT-provided CIB sources include:

• Statistics and metadata provided by the operating system (e.g., network interface, socket statis-

tics, battery drain, etc.).

• Statistics about path support from completed transport sessions and Happy Eyeballs (e.g., trans-

port support and IP version).

• Path characteristics derived from various passive and active measurement techniques (e.g., net-

work controller, network probes).

• Interface metadata (e.g., signal strength, type).

While some of these CIB sources have already been implemented (interface stats, network controller

path information), additional CIB sources may be developed as NEAT is deployed in new scenarios.

Provided Transport Service Feature(s): There are no specific Transport Service Features associated

to this building block.

Related building blocks:

• NEAT Policy Manager (§ 3.4.1).

4 NEAT reference material

A key element to a successful implementation project is proper documentation, ease of use of the

code, and reference material like tutorials and pre-packaged examples. The NEAT consortium be-

lieves that the public community—e.g., network application developers, middleware developers, and

students—should be able to learn how to use the NEAT library in the most simple and straightforward

way. Therefore, the NEAT code is complemented by online documentation as well as compiling/in-

stallation files and instructions; also, API reference documentation as well as a tutorial have been

made publicly available. In addition, a series of code examples can be found throughout this docu-

ment with regards to each transport component. The NEAT documentation is maintained up-to-date

as the library evolves using the readthedocs Content Management System [8].

4.1 NEAT tutorial

A tutorial on how to use the NEAT library, explaining the main concepts used in NEAT (e.g., flows,

contexts, properties, etc.) and including a step-by-step minimal client and server example is available

at http://neat.readthedocs.io/en/latest/tutorial.html. Section 2.1 of this document provides a copy of

such tutorial at the time of writing.

80 of 131 Project no. 644334

http://neat.readthedocs.io/en/latest/tutorial.html

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

Table 5: OS distributions used for NEAT VMs.

Operating System Version

Ubuntu 16.04 LTS
Debian 9.0 (stretch)
FreeBSD 11

4.2 Additional online documentation

The NEAT API reference documentation describes a set of API functions exposed to the user. It also

explains the callback mechanism and the related choices used in NEAT, as well as the error codes, the

optional arguments, and properties. It is available at http://neat.readthedocs.io/en/latest/index.html

and a to-date instance of it is included in Appendix B of this document. A reference to NEAT’s coding

style can be found at http://neat.readthedocs.io/en/latest/internal/codingstyle.html. It is based on

the coding style used in the Linux kernel.

4.3 Virtual machines

To enable interested developers to quickly evaluate NEAT, the NEAT library, including installation in-

structions, sample test applications and documentation, is provided within ready-to-deploy virtual

machine (VM) environments. These NEAT VMs support both VMware and VirtualBox hypervisors

and provide a self-contained environment showcasing the NEAT library. Each VM contains a pre-

configured version of the NEAT library, built from a recent snapshot of the Github repository. NEAT

VMs are publicly available to download via https://www.neat-project.org/resources/ to facilitate us-

age and adoption by interested developers. Users can evaluate and test NEAT in a safe and supported

machine and they can clone it as many times as needed to simulate multiple hosts in complex topolo-

gies. The list of OS distributions (Long Term Support versions are preferred) available through the

NEAT VM repository at the time of writing is listed in Table 5.

Each VM contains a recent binary version of the NEAT library that has successfully passed the

automated Buildbot tests14. The Policy Manager is configured to run as a daemon, using a minimal

set of pre-configured policies and CIB entries. In addition, the VMs contain the NEAT sources in the

directory ~/neat linked to the NEAT Github repository enabling users to available to pull updated

development code or push contributions. The images also include all package dependencies required

to build and debug NEAT, as well as compiler suites and example NEAT code.

The process of configuring and updating the VM installation of NEAT on Debian-based systems

has been automated using Ansible15.

5 Conclusions

This deliverable presents the final version of a prototype implementation of the NEAT Core Transport

System. The work realises NEAT as a user-space library. The components of the NEAT Transport Ser-

vices have already been identified in Deliverable D1.3 [41], they provide an alternative to the legacy

sockets API. The NEAT library allows applications to be developed that request the service they need

14These are described in detail in Deliverable D4.2 [14].
15https://github.com/NEAT-project/neat/tree/master/debian/ansible

81 of 131 Project no. 644334

http://neat.readthedocs.io/en/latest/index.html
http://neat.readthedocs.io/en/latest/internal/codingstyle.html
https://www.neat-project.org/resources/
https://github.com/NEAT-project/neat/tree/master/debian/ansible

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

using a new approach that is agnostic to the specific choice of transport protocol and protocol param-

eters. This not only allows applications to be developed that can take advantage of common protocol

machinery, but it also eases introduction of new network mechanisms and transport protocols.

The document reflects the final status of the implementation at the end of WP2 (milestone MS12),

describing each of the components in the NEAT library, together with operation of the system as a

whole and a set of examples of usage. It reflects the design and development efforts undertaken in

Tasks 2.1 and 2.2. It also includes the final adjustment of the code in Task 2.3 to ensure the realised

services and APIs are consistent with those defined in Task 1.4 of WP1. Further work to maintain the

prototype and support analysis of performance and functionalities may continue within the NEAT

project as a part of WP4, but are beyond the scope of this document.

Section 1 provides a short overview of the NEAT architecture (§ 1.1) and identified the Transport

Services provided by the NEAT User API (§ 1.2). It introduced the core transport components required

to provide such Transport Services (§ 1.3) and provided a step-by-step summary of using the NEAT

workflow. This presented operation from the moment a connection setup attempt is made by an ap-

plication using the API, to the point where a connection handle is returned to the application (§ 1.4),

allowing the application to use a callback interface to send and receive network data. It also includes

an overview of connection teardown when the application has no further use for the network connec-

tion (§ 1.5).

Section 2 presents a detailed tutorial on the new approach to developing applications programs us-

ing the NEAT User API. It contains a full example of a client/server application using NEAT (§ 2.1). In

describing use of the API it summarised how this eases network programming in contrast to the tradi-

tional Berkeley socket API (§ 2.2), allowing a more streamlined code in network applications: Built-in

functionalities underneath the NEAT User API that are transparent to the application programmer and

supported across multiple OS platforms (e.g., name resolution, transport protocol selection, and fall-

back mechanisms); and the call-back approach simplifies network programming. A set of bindings for

the Python scripting language were also developed and these are discussed in § 2.3.

Section 3 provides a detailed review of each of the core transport functions. This is structured

into four classes of building blocks: Framework, Transport, Selection and Policy according to the ar-

chitecture documented in Deliverable D1.1 [20]. The operation of each component is explained, as

implemented in the final version of the NEAT library, and their internal dependencies are identified.

Examples of use or operation has been provided together with code snippets in the C language.

Finally, Section 4 summarises the documentation developed for the NEAT core transport system.

This includes an online NEAT tutorial, the NEAT API reference, and VMs pre-packaged with NEAT sup-

port. In summary, thanks to their platform- and protocol-independent nature, the NEAT core trans-

port system and its User API as outlined in this document provide a simple, flexible, and easy way for

application programmers to take advantage of the transport services provided by Internet transport

protocols.

82 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

References

[1] Filestreamer. [Online]. Available: https://github.com/oystedal/filestreamer

[2] libre — a portable and generic library for real-time communication. [Online]. Available:

http://creytiv.com/re.html

[3] libuv library. [Online]. Available: http://libuv.org/

[4] Node.js. [Online]. Available: https://nodejs.org/

[5] Openssl bio_s_mem manual. [Online]. Available: https://wiki.openssl.org/index.php/Manual:

BIO_s_mem(3)

[6] OpenSSL library. [Online]. Available: https://www.openssl.org/

[7] RAWRTC — webrtc and ortc library. [Online]. Available: http://creytiv.com/re.html

[8] Read the docs. [Online]. Available: https://readthedocs.org

[9] socket.io. [Online]. Available: https://socket.io

[10] TCP increased security working group. [Online]. Available: https://datatracker.ietf.org/wg/

tcpinc/charter/

[11] usrsctp — a portable sctp userland stack. [Online]. Available: https://github.com/sctplab/

usrsctp/

[12] D. Balenson, “Privacy Enhancement for Internet Electronic Mail: Part III: Algorithms, Modes,

and Identifiers,” RFC 1423 (Historic), Internet Engineering Task Force, Feb. 1993. [Online].

Available: http://www.ietf.org/rfc/rfc1423.txt

[13] Z. Bozakov, S. Mangiante, C. Benet, A. Brunstrom, R. Santos, A. Kassler, and D. Buckley, “A NEAT

framework for enhanced end-host integration in SDN environments,” in IEEE Conference on Net-

work Function Virtualization and Software Defined Networks (IEEE NFV-SDN), Berlin, Nov. 2017,

accepted for publication, to appear.

[14] Z. Bozakov, A. Brunstrom, D. Damjanovic, G. Fairhurst, A. F. Hansen, T. Jones, N. Khademi,

A. Petlund, D. Ros, T. Rozensztrauch, M. I. Sánchez Bueno, D. Stenberg, M. Tüxen, and F. Wein-

rank, “Final Version of NEAT-based Tools,” The NEAT Project (H2020-ICT-05-2014), Deliverable

D4.2, Sep. 2017.

[15] V. Cerf, Y. Dalal, and C. Sunshine, “Specification of Internet Transmission Control Program,” RFC

675 (Historic), Internet Engineering Task Force, Dec. 1974, obsoleted by RFC 7805. [Online].

Available: http://www.ietf.org/rfc/rfc675.txt

[16] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain, “TCP Fast Open,” RFC 7413 (Experimental),

Internet Engineering Task Force, Dec. 2014. [Online]. Available: http://www.ietf.org/rfc/rfc7413.

txt

[17] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,”

RFC 5246 (Proposed Standard), Internet Engineering Task Force, Aug. 2008, updated by

RFCs 5746, 5878, 6176, 7465, 7507, 7568, 7627, 7685, 7905, 7919. [Online]. Available:

http://www.ietf.org/rfc/rfc5246.txt

83 of 131 Project no. 644334

https://github.com/oystedal/filestreamer
http://creytiv.com/re.html
http://libuv.org/
https://nodejs.org/
https://wiki.openssl.org/index.php/Manual:BIO_s_mem(3)
https://wiki.openssl.org/index.php/Manual:BIO_s_mem(3)
https://www.openssl.org/
http://creytiv.com/re.html
https://readthedocs.org
https://socket.io
https://datatracker.ietf.org/wg/tcpinc/charter/
https://datatracker.ietf.org/wg/tcpinc/charter/
https://github.com/sctplab/usrsctp/
https://github.com/sctplab/usrsctp/
http://www.ietf.org/rfc/rfc1423.txt
http://www.ietf.org/rfc/rfc675.txt
http://www.ietf.org/rfc/rfc7413.txt
http://www.ietf.org/rfc/rfc7413.txt
http://www.ietf.org/rfc/rfc5246.txt

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

[18] ECMA. (2013) The JSON data interchange format. [Online]. Available: http://www.

ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

[19] G. Fairhurst, B. Trammell, and M. Kuehlewind, “Services Provided by IETF Transport Protocols

and Congestion Control Mechanisms,” RFC 8095 (Informational), Internet Engineering Task

Force, Mar. 2017. [Online]. Available: http://www.ietf.org/rfc/rfc8095.txt

[20] G. Fairhurst, T. Jones, Z. Bozakov, A. Brunstrom, D. Damjanovic, T. Eckert, K. R. Evensen, K.-J.

Grinnemo, A. F. Hansen, N. Khademi, S. Mangiante, P. McManus, G. Papastergiou, D. Ros,

M. Tüxen, E. Vyncke, and M. Welzl, “NEAT Architecture,” The NEAT Project (H2020-ICT-05-2014),

Deliverable D1.1, Dec. 2015. [Online]. Available: https://www.neat-project.org/publications/

[21] K.-J. Grinnemo, A. Brunstrom, P. Hurtig, N. Khademi, and Z. Bozakov, “Happy Eyeballs

for Transport Selection,” Internet Draft draft-grinnemo-taps-he, Jun. 2017, work in progress.

[Online]. Available: https://tools.ietf.org/html/draft-grinnemo-taps-he

[22] K.-J. Grinnemo, Z. Bozakov, A. Brunstrom, D. Damjanovic, K. Evensen, G. Fairhurst, A. Hansen,

D. Hayes, P. Hurtig, N. Khademi, S. Mangiante, A. Mohideen, M. Rajiullah, D. Ros, I. Rüngeler, M. I.

Sánchez Bueno, R. Santos, R. Secchi, T. Tangenes, M. Tüxen, F. Weinrank, and M. Welzl, “Initial

Report on the Extended Transport System,” The NEAT Project (H2020-ICT-05-2014), Deliverable

D3.1, Aug. 2016.

[23] K.-J. Grinnemo, A. Brunstrom, G. Fairhurst, D. Hayes, P. Hurtig, N. Khademi, D. Ros, I. Rüngeler,

M. Tüxen, F. Weinrank, and M. Welzl, “Final Report on Transport Protocol Enhancements,” The

NEAT Project (H2020-ICT-05-2014), Deliverable D3.2, Mar. 2017.

[24] M. Handley, V. Jacobson, and C. Perkins, “SDP: Session Description Protocol,” RFC

4566 (Proposed Standard), Internet Engineering Task Force, Jul. 2006. [Online]. Available:

http://www.ietf.org/rfc/rfc4566.txt

[25] D. Hayes, D. Ros, A. Petlund, and I. Ahmed, “A framework for less than best effort congestion

control with soft deadlines,” in Proceedings of IFIP Networking, Stockholm, Jun. 2017. [Online].

Available: http://dl.ifip.org/db/conf/networking/networking2017/1570334752.pdf

[26] S. Islam, M. Welzl, K. Hiorth, D. Hayes, Ø. Dale, G. Armitage, and S. Gjessing, “Single-path TCP

Congestion Control Coupling,” Technical Report 459, Department of Informatics, University of

Oslo, Jan. 2017.

[27] B. Kaliski, “Privacy Enhancement for Internet Electronic Mail: Part IV: Key Certification and

Related Services,” RFC 1424 (Historic), Internet Engineering Task Force, Feb. 1993. [Online].

Available: http://www.ietf.org/rfc/rfc1424.txt

[28] S. Kent, “Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based Key

Management,” RFC 1422 (Historic), Internet Engineering Task Force, Feb. 1993. [Online].

Available: http://www.ietf.org/rfc/rfc1422.txt

[29] N. Khademi, D. Ros, M. Welzl, Z. Bozakov, A. Brunstrom, G. Fairhurst, K.-J. Grinnemo, D. Hayes,

P. Hurtig, T. Jones, S. Mangiante, M. Tüxen, and F. Weinrank, “NEAT: A Platform- and Protocol-

Independent Internet Transport API,” IEEE Communications Magazine, vol. 55, no. 6, pp. 46–54,

Jun. 2017.

84 of 131 Project no. 644334

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ietf.org/rfc/rfc8095.txt
https://www.neat-project.org/publications/
https://tools.ietf.org/html/draft-grinnemo-taps-he
http://www.ietf.org/rfc/rfc4566.txt
http://dl.ifip.org/db/conf/networking/networking2017/1570334752.pdf
http://www.ietf.org/rfc/rfc1424.txt
http://www.ietf.org/rfc/rfc1422.txt

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

[30] N. Khademi, Z. Bozakov, A. Brunstrom, D. Damjanovic, K. R. Evensen, G. Fairhurst,

K.-J. Grinnemo, T. Jones, S. Mangiante, A. Petlund, D. Ros, D. Stenberg, M. Tüxen,

F. Weinrank, and M. Welzl, “Core Transport System, with both Low-level and High-level

Components,” NEAT Project (H2020-ICT-05-2014), Deliverable D2.2, Mar. 2017. [Online].

Available: https://www.neat-project.org/publications/

[31] J. Linn, “Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and

Authentication Procedures,” RFC 1421 (Historic), Internet Engineering Task Force, Feb. 1993.

[Online]. Available: http://www.ietf.org/rfc/rfc1421.txt

[32] R. Mahy, P. Matthews, and J. Rosenberg, “Traversal Using Relays around NAT (TURN): Relay

Extensions to Session Traversal Utilities for NAT (STUN),” RFC 5766 (Proposed Standard),

Internet Engineering Task Force, Apr. 2010. [Online]. Available: http://www.ietf.org/rfc/rfc5766.

txt

[33] G. Papastergiou, K.-J. Grinnemo, A. Brunstrom, D. Ros, M. Tüxen, N. Khademi, and P. Hurtig,

“On the cost of using Happy Eyeballs for transport protocol selection,” in Proceedings of the 2016

Applied Networking Research Workshop (ANRW), Berlin, Jul. 2016, pp. 45–51.

[34] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security Version 1.2,” RFC 6347

(Proposed Standard), Internet Engineering Task Force, Jan. 2012, updated by RFCs 7507, 7905.

[Online]. Available: http://www.ietf.org/rfc/rfc6347.txt

[35] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Protocol for Network Address

Translator (NAT) Traversal for Offer/Answer Protocols,” RFC 5245 (Proposed Standard),

Internet Engineering Task Force, Apr. 2010, updated by RFC 6336. [Online]. Available:

http://www.ietf.org/rfc/rfc5245.txt

[36] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session Traversal Utilities for NAT (STUN),”

RFC 5389 (Proposed Standard), Internet Engineering Task Force, Oct. 2008, updated by RFC

7350. [Online]. Available: http://www.ietf.org/rfc/rfc5389.txt

[37] R. Stewart, M. Tuexen, S. Loreto, and R. Seggelmann, “Stream schedulers and user

message interleaving for the stream control transmission protocol,” Working Draft, IETF

Secretariat, Internet-Draft draft-ietf-tsvwg-sctp-ndata-12, Aug. 2017. [Online]. Available: http:

//www.ietf.org/internet-drafts/draft-ietf-tsvwg-sctp-ndata-12.txt

[38] F. Weinrank, K.-J. Grinnemo, Z. Bozakov, A. Brunstrom, T. Dreibholz, G. Fairhurst, P. Hurtig,

N. Khademi, and M. Tüxen, “A NEAT Way to Browse the Web,” in Proceedings of the

2017 Applied Networking Research Workshop (ANRW), Prague, Jul. 2017. [Online]. Available:

https://irtf.org/anrw/2017/anrw17-final13.pdf

[39] M. Welzl, M. Tuexen, and N. Khademi, “On the usage of transport service features provided

by IETF transport protocols,” Internet Draft draft-ietf-taps-transports-usage, Aug. 2017, work in

progress. [Online]. Available: https://tools.ietf.org/html/draft-ietf-taps-transports-usage

[40] M. Welzl, A. Brunstrom, D. Damjanovic, K. Evensen, T. Eckert, G. Fairhurst, N. Khademi,

S. Mangiante, A. Petlund, D. Ros, and M. Tüxen, “First Version of Services and APIs,”

The NEAT Project (H2020-ICT-05-2014), Deliverable D1.2, Mar. 2016. [Online]. Available:

https://www.neat-project.org/publications/

85 of 131 Project no. 644334

https://www.neat-project.org/publications/
http://www.ietf.org/rfc/rfc1421.txt
http://www.ietf.org/rfc/rfc5766.txt
http://www.ietf.org/rfc/rfc5766.txt
http://www.ietf.org/rfc/rfc6347.txt
http://www.ietf.org/rfc/rfc5245.txt
http://www.ietf.org/rfc/rfc5389.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-sctp-ndata-12.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-sctp-ndata-12.txt
https://irtf.org/anrw/2017/anrw17-final13.pdf
https://tools.ietf.org/html/draft-ietf-taps-transports-usage
https://www.neat-project.org/publications/

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

[41] M. Welzl, D. Damjanovic, T. Jones, M. Tüxen, and F. Weinrank, “Final Version of Services and

APIs,” The NEAT Project (H2020-ICT-05-2014), Deliverable D1.3, Sep. 2017.

[42] D. Wing and A. Yourtchenko, “Happy Eyeballs: Success with Dual-Stack Hosts,” RFC

6555 (Proposed Standard), Internet Engineering Task Force, Apr. 2012. [Online]. Available:

http://www.ietf.org/rfc/rfc6555.txt

86 of 131 Project no. 644334

http://www.ietf.org/rfc/rfc6555.txt

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

A NEAT Terminology

This appendix defines terminology used to describe NEAT. These terms are used throughout this doc-

ument.

Application An entity (program or protocol module) that uses the transport layer for end-to-end de-

livery of data across the network (this may also be an upper layer protocol or tunnel encapsula-

tion). In NEAT, the application data is communicated across the network using the NEAT User

API either directly, or via middleware or a NEAT Application Support API on top of the NEAT User

API.

Characteristics Information Base (CIB) The entity where path information and other collected data

from the NEAT System is stored for access via the NEAT Policy Manager.

NEAT API Framework A callback-based API in NEAT. Once the NEAT base structure has started, using

this framework an application can request a connection (create NEAT Flow), communicate over

it (write data to the NEAT Flow and read received data from the NEAT Flow) and register callback

functions that will be executed upon the occurrence of certain events.

NEAT Application Support Module Example code and/or libraries that provide a more abstract way

for an application to use the NEAT User API. This could include methods to directly support a

middleware library or an interface to emulate the traditional Socket API.

NEAT Component An implementation of a feature within the NEAT System. An example is a “Happy

Eyeballs” component to provide Transport Service selection. Components are designed to be

portable (e.g. platform-independent).

NEAT Diagnostics and Statistics Interface An interface to the NEAT System to access information

about the operation and/or performance of system components, and to return endpoint statis-

tics for NEAT Flows.

NEAT Flow A flow of protocol data units sent via the NEAT User API. For a connection-oriented flow,

this consists of the PDUs related to a specific connection.

NEAT Flow Endpoint The NEAT Flow Endpoint is a NEAT structure that has a similar role to the Trans-

mission Control Block (TCB) in the context of TCP. This is mainly used by the NEAT Logic to

collect the information about a NEAT Flow.

NEAT Framework The Framework components include supporting code and data structures needed

to implement the NEAT User Module. They call other components to perform the functions

required to select and realise a Transport Service. The NEAT User API is an important component

of the NEAT Framework; other components include diagnostics and measurement.

NEAT Logic The NEAT Logic is at the core of the NEAT System as part of the NEAT Framework com-

ponents and is responsible for providing functionalities behind the NEAT User API.

NEAT Policy Manager Part of the NEAT User Module responsible for the policies used for service se-

lection. The Policy Manager is accessed via the (user-space) Policy Interface, portable across

platforms. An implementation of the NEAT Policy Manager may optionally also interface to ker-

nel functions or implement new functions within the kernel (e.g. relating to information about

a specific network interface or protocols).

87 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

NEAT Selection Selection components are responsible for choosing an appropriate transport end-

point and a set of transport components to create a Transport Service Instantiation. This utilises

information passed through the NEAT User API, and combines this with inputs from the NEAT

Policy Manager to identify candidate services and test the suitability of the candidates to make a

final selection.

NEAT Signalling and Handover Signalling and Handover components enable optional interaction

with remote endpoints and network devices to signal the service requested by a NEAT Flow, or to

interpret signalling messages concerning network or endpoint capabilities for a Transport Ser-

vice Instantiation.

NEAT System The NEAT System includes all user-space and kernel-space components needed to re-

alise application communication across the network. This includes all of the NEAT User Module,

and the NEAT Application Support Module.

NEAT User API The API to the NEAT User Module through which application data is exchanged. This

offers Transport Services similar to those offered by the Socket API, but using an event-driven

style of interaction. The NEAT User API provides the necessary information to allow the NEAT

User Module to select an appropriate Transport Service. This is part of the NEAT Framework

group of components.

NEAT User Module The set of all components necessary to realise a Transport Service provided by

the NEAT System. The NEAT User Module is implemented in user space and is designed to be

portable across platforms. It has five main groupings of components: Selection, Policy (i.e. the

Policy Manager and its related information bases and default values), Transport, Signalling and

Handover, and the NEAT Framework. The NEAT User Module is a subset of a NEAT System.

Policy Information Base (PIB) The rules used by the NEAT Policy Manager to guide the selection of

the Transport Service Instantiation.

Policy Interface (PI) The interface to allow querying of the NEAT Policy Manager.

Stream A set of data blocks that logically belong together, such that uniform network treatment would

be desirable for them. A stream is bound to a NEAT Flow. A NEAT Flow contains one or more

streams.

Transport Address A transport address is defined by a network-layer address, a transport-layer pro-

tocol, and a transport-layer port number.

Transport Feature Short for Transport Service Feature.

Transport Service A set of end-to-end features provided to users, without an association to any given

framing protocol, which provides a complete service to an application. The desire to use a spe-

cific feature is indicated through the NEAT User API.

Transport Service Feature A specific end-to-end feature that the transport layer provides to an appli-

cation. Examples include confidentiality, reliable delivery, ordered delivery and message-versus-

stream orientation.

88 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

Transport Service Instantiation An arrangement of one or more transport protocols with a selected

set of features and configuration parameters that implements a single Transport Service. Exam-

ples include: a protocol stack to support TCP, UDP, or SCTP over UDP with the partial reliability

option.

B NEAT API Reference

B.1 Optional arguments

Some of the functions in the NEAT API, such as neat_open, neat_read and neat_write, take op-

tional arguments. These are sometimes used to pass optional arguments to functions, and sometimes

used to return additional values from the function. Optional arguments are passed as an array of the

struct neat_tlv and an integer specifying the length of this array. neat_tlv is defined as follows:

1 struct neat_tlv {

2 neat_tlv_tag tag;

3 neat_tlv_type type;

4

5 union {

6 int integer;

7 char *string;

8 float real;

9 } value;

10 };

Listing 33: neat_tlv struct.

An optional argument takes the form of a tag name, a type, and a value of either a string, integer or

a floating point number. The tag specifies which optional argument the value belongs to, and the type

asserts the type of the value passed as this argument. An error will be raised of the type is different

than what the function expects.

You may either work with this struct directly, or you may use the preprocessor macros explained

later in this document.

B.1.1 Specifying no optional arguments

To specify no optional arguments, simply passNULL as theoptargsparameter and0 as theopt_count

parameter of the function.

B.1.2 Optional argument macros

These are the optional argument macros used in NEAT:

• NEAT_OPTARGS_DECLARE(max): Declare the necessary variables to use the rest of these macros.

Allocates (on the stack) an array of length max and an integer for storing the number of optional

arguments specified. NEAT_OPTARGS_MAX may be used as the default array size.

• NEAT_OPTARGS_INIT(): Initializes the variables declared by NEAT_OPTARGS_DECLARE. May

also be used to reset the (number of) optional arguments back to 0.

89 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

• NEAT_OPTARG_INT(tag,value): Specify the tag and the value of an optional argument that

takes an integer.

• NEAT_OPTARG_FLOAT(tag,value): Specify the tag and the value of an optional argument that

takes a floating point number.

• NEAT_OPTARG_STRING(tag,value): Specify the tag and the value of an optional argument

that takes a string.

• NEAT_OPTARGS: Represents the array of optional arguments. Specify this macro as the optarg

parameter.

• NEAT_OPTARG_COUNT: Stores the number of the optional arguments specified so far with

NEAT_OPTARG_INT, NEAT_OPTARG_FLOAT or NEAT_OPTARG_STRING. This count is reset by

NEAT_OPTARGS_INIT(). Specify this macro as the opt_count argument.

B.1.3 Optional argument tags

These are the optional argument tags used in NEAT:

• NEAT_TAG_STREAM_ID (integer): Specifies the ID of the stream which the data should be written

to, or which stream the data was read from.

• NEAT_TAG_STREAM_COUNT (integer): Specifies the number of stream to create. Only used with

protocols that support multiple streams.

• NEAT_TAG_FLOW_GROUP (integer): Specifies the flow group this flow belongs to.

• NEAT_TAG_PRIORITY (float): Specifies the priority of this flow relative to other flows in the flow

group.

• NEAT_TAG_CC_ALGORITHM (string): Specifies the name of the (TCP) congestion control algo-

rithm that will be used by this flow. A system default will be used if the specified algorithm is not

available.

Currently unused tags:

• NEAT_TAG_LOCAL_NAME

• NEAT_TAG_SERVICE_NAME

• NEAT_TAG_CONTEXT

• NEAT_TAG_PARTIAL_RELIABILITY_METHOD

• NEAT_TAG_PARTIAL_RELIABILITY_VALUE

• NEAT_TAG_PARTIAL_MESSAGE_RECEIVED

• NEAT_TAG_PARTIAL_SEQNUM

• NEAT_TAG_UNORDERED

• NEAT_TAG_UNORDERED_SEQNUM

90 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

• NEAT_TAG_DESTINATION_IP_ADDRESS

Example:

1 NEAT_OPTARGS_DECLARE(NEAT_OPTARGS_MAX);

2 NEAT_OPTARGS_INIT();

3 NEAT_OPTARG_INT(NEAT_TAG_STREAM_COUNT, 5);

4 neat_open(ctx, flow, "127.0.0.1", 8000, NEAT_OPTARGS, NEAT_OPTARGS_COUNT);

B.2 Properties

A property in NEAT may either express a requirement or it may express a desire from the application

with regards to the service provided by the transport layer.

Properties are represented as JSON objects. A set of properties may be contained within one JSON

object. Below is an example of a JSON object with a single property:

1 {

2 "property_name": {

3 value: "property_value",

4 precedence: 1

5 }

6 }

Note that all examples of properties will be specified inside a JSON object.

Properties have a name, a value, and a precedence. A string is always used for the name of a prop-

erty. The value of a property may be either a boolean, a string, an integer, a floating point number, an

array, or an interval. Each property expects only one specific type.

The properties are sent to the Policy Manager (if present), which will return a list containing a list

of candidates, which is ordered by how good the candidate matches the request from the application.

Each candidate specifies a given setting for each property. NEAT will use the properties specified in

each candidate when trying to set up a new connection.

Some properties are set by NEAT based on parameters to function calls. Other properties must be

set manually with the neat_set_property function.

B.2.1 Application property reference

These are properties that may be set by the application.

transport Type: Array

Specifies an array of transport protocols that may be used. An application may specify either one

protocol with precedence 2, or multiple protocols with precedence 1.

Note: May not be queried with neat_get_property before execution of the on_connected call-

back. When querying this property, the returned value is a string describing the actual transport in use.

Note: Applications should avoid specifying the protocol(s) to use directly, and instead rely on the

Policy Manager to make a decision on what protocol(s) to use based on other properties. The trans-

port property should only be used for systems without a Policy Manager, or if the choice of transport

protocol is strictly mandated by the application protocol.

1 {

2 "transport": [

91 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

3 {

4 "value": "SCTP",

5 "precedence": 1

6 },

7 {

8 "value": "TCP",

9 "precedence": 1

10 }

11]

12 }

Listing 34: Example 1: multiple protocols

1 {

2 "transport": [

3 {

4 "value": "UDP",

5 "precedence": 2

6 }

7]

8 }

Listing 35: Example 2: one protocol

Available protocols:

• SCTP

• SCTP/UDP (SCTP tunneled over UDP)

• TCP

• UDP

• UDP-Lite

Security Type: Boolean

Specifies whether the connection should be encrypted or not. With precedence 2, NEAT will only

report the connection as established if it was able to connect and the (D)TLS handshake succeeds.

With precedence 1, NEAT may still attempt to establish an unencrypted connection.

B.2.2 Inferred properties

These are properties that are inferred during connection setup and subsequently sent to the Policy

Manager. Applications should not set these directly.

interfaces Type: Array

Specifies a list of available interfaces that may be used for connections. The Policy Manager may

not use all interfaces in this list.

This property is inferred during the neat_open call. Do not set this property manually.

domain_name Type: String

Specifies the name of the remote endpoint to connect to with the neat_open call.

92 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

This property is inferred from the name parameter of neat_open call. Do not set this property

manually.

port Type: Integer

This property is inferred from the neat_open and neat_accept calls. Do not set this property

manually.

B.3 Callbacks

Callbacks are used in NEAT to signal events to the application. They are used to inform the application

when a flow is readable, writable, or an error has occurred.

Most callbacks have the following syntax:

1 neat_error_code

2 on_event_name(neat_flow_operations *ops)

3 {

4 return NEAT_OK; // or some error code

5 }

Listing 36: NEAT callback syntax.

The struct neat_flow_operations is defined as follows:

1 struct neat_flow_operations

2 {

3 void *userData;

4

5 neat_error_code status;

6 int stream_id;

7 struct neat_ctx *ctx;

8 struct neat_flow *flow;

9

10 neat_flow_operations_fx on_connected;

11 neat_flow_operations_fx on_error;

12 neat_flow_operations_fx on_readable;

13 neat_flow_operations_fx on_writable;

14 neat_flow_operations_fx on_all_written;

15 neat_flow_operations_fx on_network_status_changed;

16 neat_flow_operations_fx on_aborted;

17 neat_flow_operations_fx on_timeout;

18 neat_flow_operations_fx on_close;

19 neat_cb_send_failure_t on_send_failure;

20 neat_cb_flow_slowdown_t on_slowdown;

21 neat_cb_flow_rate_hint_t on_rate_hint;

22 };

Listing 37: neat_flow_operations struct.

• userData: Applications may freely store a pointer in this field.

• status: Reports any errors associated with the flow.

93 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

• stream_id: For flows that use explicit multi-streaming. Specifies which stream the event is

related to, if any.

• ctx: Pointer to the context the flow belongs to.

• flow: Pointer to the flow on which the event happened.

Callbacks are set by assigning the function pointer to the struct passed to the callback and then

calling neat_set_operations. A NULL pointer may be used to indicate that the callback should no

longer be called.

B.3.1 Example callback flow

For most applications it will be sufficient to use the following callback flow as in Figure 6. See the

tutorial in Section 2.1 for more details.

B.3.2 Callback reference

Here is a list of callbacks used by NEAT.

on_connected: Called whenever an outgoing connection has been established with neat_open, or

an incoming connection has been established with neat_accept.

on_error: Called whenever an error occurs when processing the flow. Errors are considered

critical.

on_readable: Called whenever the flow can be read from without blocking. NEAT does not per-

mit blocking reads.

on_writable: Called whenever the flow can be written to without blocking. NEAT does not per-

mit blocking writes.

on_all_written: Called when all previous data sent with neat_write has been completely

written. Does not signal that the flow is writable. Applications may use this callback to re-enable the

on_writable callback.

on_network_status_changed: Inform application that something has happened in the net-

work. This also includes flow endpoints going up, which will subsequently trigger on_connected if

that callback is set. Only available when using SCTP.

on_aborted: Called when the remote end aborts the flow. Available for flows using TCP or SCTP.

on_timeout: Called if sent data is not acknowledged within the time specified with

neat_change_timeout. Currently only available for TCP on Linux.

on_close: Called when the graceful connection shutdown has completed. Only available when

using SCTP or TCP. Note that when using TCP, this callback is called when the close() system call is

made, as TCP implementations currently does not provide any more accurate way of signalling this.

on_send_failure: Defined as:

1 void

2 on_send_failure(struct neat_flow_operations *flowops, int context, const unsigned

char *unsent)

3 {

4 }

Called to inform the application that the returned message unsent could not be transmitted. The

failure reason as reported by the transport protocol is returned in the standard status code, as an

94 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

abstracted NEAT error code. If the message was tagged with a context number, it is returned in context.

Only available for SCTP. Flows using TCP may use timeouts instead.

on_slowdown: Not currently implemented. Defined as:

1 void

2 on_slowdown(struct neat_flow_operations *ops, int ecn, uint32_t rate)

3 {

4 }

Inform the application that the flow has experienced congestion and that the sending rate should

be lowered. If rate is non-zero, it is an estimate of the new maximum sending rate. ecn is a boolean

indicating whether this notification was triggered by an ECN mark.

on_rate_hint: Not currently implemented.

Defined as:

1 void

2 on_rate_hint(struct neat_flow_operations *ops, uint32_t new_rate)

3 {

4 }

Called to inform the application that it may increase its sending rate. If new_rate is non-zero, it is

an estimate of the maximum sending rate.

B.4 Error codes

These are the error codes used by NEAT library.

• NEAT_OK: Signals that no error has occurred. Equals to 0.

• NEAT_ERROR_WOULD_BLOCK: Signals that the operation could not be performed because it would

block the process. NEAT does not permit blocking operations.

• NEAT_ERROR_BAD_ARGUMENT: Signals that one or more arguments given to the function was

invalid or incorrect. This also includes optional arguments.

• NEAT_ERROR_IO: Signals that an internal I/O operation in NEAT has failed.

• NEAT_ERROR_DNS: Signals that there was an error performing DNS resolution.

• NEAT_ERROR_INTERNAL: Signals that there was an error internally in NEAT.

• NEAT_ERROR_SECURITY: Signals that there was an error setting up an encrypted flow.

• NEAT_ERROR_UNABLE: Signals that NEAT is not able to perform the requested operation.

• NEAT_ERROR_MESSAGE_TOO_BIG: Signals that the provided buffer space is not sufficient for the

received message.

• NEAT_ERROR_REMOTE: Signals that there was an error on the remote endpoint.

• NEAT_ERROR_OUT_OF_MEMORY: Signals that NEAT is not able to allocate enough memory to

complete the requested operation.

95 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

B.5 API functions

B.5.1 neat_init_ctx

• Syntax:

1 struct neat_ctx *neat_init_ctx();

• Parameters: None.

• Return values: Returns a pointer to a newly allocated and initialized NEAT context. Returns

NULL if a context could not be allocated.

• Remarks: None.

• Examples: None.

• See also: neat_free_ctx and neat_new_flow

B.5.2 neat_free_ctx

• Syntax:

1 void neat_free_ctx(struct neat_ctx *ctx);

• Parameters: ctx: Pointer to the NEAT context to free.

• Return values: None

• Remarks: If there are any flows still kept in this context, those will be freed and closed as part of

this operation.

• Examples: None.

• See also: neat_close and neat_init_ctx and neat_new_flow

B.5.3 neat_new_flow

• Summary: Allocate and initialize a new NEAT flow.

• Syntax:

1 neat_flow *neat_new_flow(struct neat_ctx *ctx);

• Parameters: ctx: Pointer to a NEAT context.

• Return values: Returns a pointer to a new flow. Returns NULL on error.

• Remarks: None.

• Examples: None.

• See also: neat_open and neat_close

96 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

B.5.4 neat_set_property

• Summary: Set the properties of a NEAT flow.

• Syntax:

1 neat_error_code neat_set_property(

2 struct neat_ctx *ctx,

3 struct neat_flow *flow,

4 const char *properties);

• Parameters:

– ctx: Pointer to a NEAT context.

– flow: Pointer to a NEAT flow.

– properties: Pointer to a JSON-encoded string containing the flow properties.

• Return values: Returns NEAT_OK if the properties were set successfully. Returns

NEAT_ERROR_BAD_ARGUMENT if the JSON-encoded string is malformed.

• Remarks: Properties are applied when a flow connects.

• Examples: None.

• See also: None.

B.5.5 neat_get_property

• Summary: Query the properties of a flow. Returns value only, not precedence.

• Syntax:

1 neat_error_code neat_get_property(struct neat_ctx *ctx,

2 struct neat_flow *flow,

3 const char *name,

4 void *ptr,

5 size_t *size);

• Parameters:

– ctx: Pointer to a NEAT context.

– flow: Pointer to a NEAT flow.

– name: Name of the property to query.

– ptr: Pointer to a buffer where the property value may be stored.

– size: Pointer to an integer containing the size of the buffer pointed to by ptr. Updated to

contain the size of the property upon return.

• Return values: Returns NEAT_OK if the property existed and there was sufficient buffer space

available. The size parameter is updated to contain the actual size. Returns

NEAT_ERROR_MESSAGE_TOO_BIG if there was not sufficient buffer space. The size parameter

is updated to contain the required buffer size. Returns NEAT_ERROR_UNABLE if the property

does not exist.

97 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

• Remarks: Applications may pass 0 as the size parameter to query the size of the property.

• Examples:

1 size_t bufsize = 0;

2 char buffer = NULL;

3

4 if (neat_get_property(ctx, flow, "transport", buffer, &bufsize) ==

NEAT_ERROR_MESSAGE_TOO_BIG) {

5 buffer = malloc(bufsize);

6 if (buffer && neat_get_property(ctx, flow, "transport", buffer, &

bufsize) == NEAT_OK) {

7 printf("Transport: %s\n", buffer);

8 }

9 if (buffer)

10 free(buffer);

11 } else {

12 printf("\tTransport: Error: Could not find property \"transport\"\n");

13 }

• See also: Properties and neat_set_property

B.5.6 neat_open

• Summary: Open a neat flow and connect it to a given remote name and port.

• Syntax:

1 neat_error_code neat_open(struct neat_ctx *ctx,

2 struct neat_flow *flow,

3 const char *name,

4 uint16_t port,

5 struct neat_tlv optional[],

6 unsigned int opt_count);

• Parameters:

– ctx: Pointer to a NEAT context.

– flow: Pointer to a NEAT flow.

– name: The remote name to connect to.

– port: The remote port to connect to.

– optional: An array containing optional parameters.

– opt_count: The length of the array containing optional parameters.

• Optional parameters:

– NEAT_TAG_STREAM_COUNT (integer): The number of streams to open, for protocols that

supports multistreaming. Note that NEAT may automatically make use of multi-streaming

for multiple NEAT flows between the same endpoints when this parameter is not used.

98 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

– NEAT_TAG_FLOW_GROUP (integer): The group ID that this flow belongs to. For use with

coupled congestion control.

– NEAT_TAG_PRIORITY (float): The priority of this flow relative to the other flows. Must be

between 0.1 and 1.0.

– NEAT_TAG_CC_ALGORITHM (string): The congestion control algorithm to use for this flow.

• Return values: Returns NEAT_OK if the flow opened successfully. Returns

NEAT_ERROR_OUT_OF_MEMORY if the function was unable to allocate enough memory.

• Remarks: Callbacks can be specified with neat_set_operations. The on_connected call-

back will be invoked if the connection established successfully. The on_error callback will be

invoked if NEAT is unable to connect to the remote endpoint.

• Examples:

1 neat_open(ctx, flow, "bsd10.fh-muenster.de", 80, NULL, 0);

• See also: neat_read and Optional arguments

B.5.7 neat_accept

• Summary: Listen to incoming connections on a given port on one or more protocols.

• Syntax:

1 neat_error_code neat_accept(struct neat_ctx *ctx,

2 struct neat_flow *flow,

3 uint16_t port,

4 struct neat_tlv optional[],

5 unsigned int opt_count);

• Parameters:

– ctx: Pointer to a NEAT context.

– flow: Pointer to a NEAT flow.

– port: The local port to listen for incoming connections on.

– optional: An array containing optional parameters.

– opt_count: The length of the array containing optional parameters.

• Optional parameters:

– NEAT_TAG_STREAM_COUNT (integer): The number of streams to accept, for protocols that

supports multistreaming.

• Return values: Returns NEAT_OK if NEAT is listening for incoming connections on at least one

protocol. Returns NEAT_ERROR_UNABLE if there is no appropriate protocol available for the flow

properties that was specified. Returns NEAT_ERROR_BAD_ARGUMENT if flow is pointing to a flow

that is already opened or listening for incoming connections. Returns

NEAT_ERROR_BAD_ARGUMENT if NEAT_TAG_STREAM_COUNT is less than 1. Returns

NEAT_ERROR_OUT_OF_MEMORY if the function was unable to allocate enough memory.

99 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

• Remarks: Callbacks can be specified with neat_set_operations. The on_connected call-

back will be invoked if the connection established successfully. The on_error callback will be

invoked if NEAT is unable to connect to the remote endpoint. Which protocols to listen to is

determined by the flow properties.

• Examples:

1 neat_accept(ctx, flow, 8080, NULL, 0);

• See also: neat_open and Optional arguments

B.5.8 neat_read

• Summary: Read data from a neat flow.

Should only be called from within theon_readable callback specified withneat_set_operations.

• Syntax:

1 neat_error_code neat_read(struct neat_ctx *ctx,

2 struct neat_flow *flow,

3 unsigned char *buffer,

4 uint32_t amount,

5 uint32_t *actual_amount,

6 struct neat_tlv optional[],

7 unsigned int opt_count);

• Parameters:

– ctx: Pointer to a NEAT context.

– flow: Pointer to a NEAT flow.

– buffer: Pointer to a buffer where read data may be stored.

– amount: The size of the buffer pointed to by buffer.

– actual_amount: The amount of data actually read from the transport layer.

– optional: An array containing optional parameters.

– opt_count: The length of the array containing optional parameters.

• Optional parameters: This function uses optional parameters for some return values.

– NEAT_TAG_STREAM_ID (integer): The ID of the stream will be written to this parameter.

• Return values: Returns NEAT_OK if data was successfully read from the transport layer. Returns

NEAT_ERROR_WOULD_BLOCK if this call would block. ReturnsNEAT_ERROR_MESSAGE_TOO_BIG

if the buffer is not sufficiently large. This is only returned for protocols that are message based,

such as UDP, UDP-Lite and SCTP. Returns NEAT_ERROR_IO if the connection is reset.

• Remarks: This function should only be called from within the on_readable callback specified

with neat_set_operations, as this is the only way to guarantee that the call will not block.

NEAT does not permit a blocking read operation. The actual_amount value is set to 0 when

the remote side has closed the connection.

• Examples: None.

• See also: neat_write and Optional arguments

100 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

B.5.9 neat_write

• Summary: Write data to a neat flow. Should only be called from within the on_writable call-

back specified with neat_set_operations.

• Syntax:

1 neat_error_code neat_write(struct neat_ctx *ctx,

2 struct neat_flow *flow,

3 const unsigned char *buffer,

4 uint32_t amount,

5 struct neat_tlv optional[],

6 unsigned int opt_count);

• Parameters:

– ctx: Pointer to a NEAT context.

– flow: Pointer to a NEAT flow.

– buffer: Pointer to a buffer containing the data to be written.

– amount: The size of the buffer pointed to by buffer.

– optional: An array containing optional parameters.

– opt_count: The length of the array containing optional parameters.

• Optional parameters:

– NEAT_TAG_STREAM_ID (integer): The ID of the stream the data will be written to.

• Return values: Returns NEAT_OK if data was successfully written to the transport layer. Returns

NEAT_ERROR_BAD_ARGUMENT if the specified stream ID is negative. Returns

NEAT_ERROR_OUT_OF_MEMORY if NEAT is unable to allocate memory. Returns

NEAT_ERROR_WOULD_BLOCK if this call would block. Returns NEAT_ERROR_IO if an I/O op-

eration failed.

• Remarks: This function should only be called from within the on_writable callback specified

with neat_set_operations, as this is the only way to guarantee that the call will not block.

NEAT does not permit a blocking write operation. Invalid stream IDs are silently ignored.

• Examples: None.

• See also: neat_read and Optional arguments

B.5.10 neat_shutdown

• Summary: Initiate a graceful shutdown of this flow.

– The receive buffer can still be read and on_readable gets fired like in normal operation.

– Receiving new data from the peer may fail.

– All data in the send buffer will be transmitted

– neat_write will fail and on_writable will not be called.

101 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

– If the peer also has closed the connection, the on_close callback gets fired.

• Syntax:

1 neat_error_code neat_shutdown(struct neat_ctx *ctx,

2 struct neat_flow *flow);

• Parameters:

– ctx: Pointer to a NEAT context.

– flow: Pointer to the NEAT flow to be shut down.

• Return values: ReturnsNEAT_OK if the flow was shut down successfully. ReturnsNEAT_ERROR_IO

if NEAT was unable to shut the flow down successfully.

• Remarks: None.

• Examples: None.

• See also: neat_close

B.5.11 neat_close

• Summary: Close this flow and free all associated data. If the peer still has data to send, it cannot

be received any more after this call. Data buffered by the NEAT layer which has not given to the

network layer yet will be discarded.

• Syntax:

1 neat_error_code neat_close(struct neat_ctx *ctx,

2 struct neat_flow *flow);

• Parameters:

– ctx: Pointer to a NEAT context.

– flow: Pointer to the NEAT flow to be closed.

• Return values: Returns NEAT_OK.

• Remarks: None.

• Examples: None.

• See also: neat_shutdown

B.5.12 neat_abort

• Summary: Abort this flow and free all associated data.

• Syntax:

1 neat_error_code neat_abort(struct neat_ctx *ctx,

2 struct neat_flow *flow);

102 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

• Parameters:

– ctx: Pointer to a NEAT context.

– flow: Pointer to the NEAT flow to be aborted.

• Return values: Returns NEAT_OK.

• Remarks: Calls neat_close internally.

• Examples: None.

• See also: neat_shutdown and neat_close

B.5.13 neat_set_operations

• Syntax:

1 neat_error_code neat_set_operations(

2 struct neat_ctx *ctx,

3 struct neat_flow *flow,

4 struct neat_flow_operations *ops);

• Parameters:

– ctx: Pointer to a NEAT context.

– flow: Pointer to a NEAT flow.

– ops: Pointer to a struct that defines the operations/callbacks for this flow.

• Return values: Returns NEAT_OK.

• Remarks: struct neat_flow_operations is defined as follows:

1 struct neat_flow_operations

2 {

3 void *userData;

4

5 neat_error_code status;

6 int stream_id;

7 neat_flow_operations_fx on_connected;

8 neat_flow_operations_fx on_error;

9 neat_flow_operations_fx on_readable;

10 neat_flow_operations_fx on_writable;

11 neat_flow_operations_fx on_all_written;

12 neat_flow_operations_fx on_network_status_changed;

13 neat_flow_operations_fx on_aborted;

14 neat_flow_operations_fx on_timeout;

15 neat_flow_operations_fx on_close;

16 neat_cb_send_failure_t on_send_failure;

17 neat_cb_flow_slowdown_t on_slowdown;

18 neat_cb_flow_rate_hint_t on_rate_hint;

19

20 struct neat_ctx *ctx;

103 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

21 struct neat_flow *flow;

22 };

The information in the ops struct will be copied by NEAT.

• Examples:

1 struct neat_flow_operations ops;

2 ops.on_readable = on_readable;

3 ops.on_writable = on_writable;

4 neat_set_operations(ctx, flow, ops);

B.5.14 neat_change_timeout

• Summary: Change the timeout of the flow. Data that is sent may remain un-acked for up to a

given number of seconds before the connection is terminated and a timeout is reported to the

application.

• Syntax:

1 neat_error_code

2 neat_change_timeout(struct neat_ctx *ctx, struct neat_flow *flow,

3 unsigned int seconds);

• Parameters:

– ctx: Pointer to a NEAT context.

– flow: Pointer to a NEAT flow.

– seconds: The number of seconds after which un-acked data will cause a timeout to be

reported.

• Return values: Returns NEAT_OK if the timeout was successfully changed. Returns

NEAT_ERROR_UNABLE if attempting to use this function on a system other than Linux, or on flow

that is not using TCP. Returns NEAT_ERROR_BAD_ARGUMENT if the timeout value is too large or

if the specified flow is not opened. Returns NEAT_ERROR_IO if NEAT was unable to set the time-

out.

• Remarks: Only available on Linux for flows using TCP.

• Examples: None.

B.5.15 neat_set_primary_dest

• Summary: For multihomed flows, set the primary destination address.

• Syntax:

1 neat_error_code neat_set_primary_dest(struct neat_ctx *ctx,

2 struct neat_flow *flow,

3 const char* address);

• Parameters:

104 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

– ctx: Pointer to a NEAT context.

– flow: Pointer to a NEAT flow.

– address: The remote address to use as the primary destination address.

• Return values: Returns NEAT_OK if the primary destination address was set successfully. Re-

turns NEAT_ERROR_UNABLE if the flow is not using SCTP as the transport protocol. Returns

NEAT_ERROR_BAD_ARGUMENT if the provided address is not a literal IP address.

• Remarks: Currently only available for SCTP.

• Examples: None.

B.5.16 neat_secure_identity

• Summary: Specify a certificate and key to use for secure connections.

• Syntax:

1 neat_error_code neat_secure_identity(

2 struct neat_ctx *ctx,

3 struct neat_flow *flow,

4 const char *filename);

• Parameters:

– ctx: Pointer to a NEAT context.

– flow: Pointer to a NEAT flow.

– filename: Path to the PEM file containing the certificate and key.

• Return values: Returns NEAT_OK.

• Remarks: None.

• Examples: None.

B.5.17 neat_set_checksum_coverage

• Summary: Set the checksum coverage for messages sent or received on this flow.

• Syntax:

1 neat_error_code neat_set_checksum_coverage(

2 struct neat_ctx *ctx,

3 struct neat_flow *flow,

4 unsigned int send_coverage,

5 unsigned int receive_coverage);

• Parameters:

– ctx: Pointer to a NEAT context.

– flow: Pointer to a NEAT flow.

105 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

– send_coverage: UDP-Lite: The number of bytes covered by the checksum when sending

messages. UDP: Ignored.

– receive_coverage: UDP-Lite: The lowest number of bytes that must be covered by the

checksum on a received message. UDP: See below.

• Return values: Returns NEAT_OK if the checksum coverage was set successfully. Returns

NEAT_ERROR_UNABLE if the checksum coverage cannot be set, either because the value is in-

valid, or because the protocol does not support it.

• Remarks: Only available for flows using UDP or UDP-Lite. Checksum verification may be en-

abled/disabled on the receive side for flows using UDP. Specifying a non-zero value for

receive_coverage will enable it; specifying 0 will disable it.

• Examples: None.

B.5.18 neat_set_qos

• Summary: Set the Quality-of-Service class for this flow.

• Syntax:

1 neat_error_code neat_set_qos(struct neat_ctx *ctx,

2 struct neat_flow *flow,

3 uint8_t qos);

• Parameters:

– ctx: Pointer to a NEAT context.

– flow: Pointer to a NEAT flow.

– qos: The QoS class to use for this flow.

• Return values: Returns NEAT_OK if the QoS class was set successfully. Returns

NEAT_ERROR_UNABLE if NEAT was not able to set the requested QoS class.

• Remarks: None.

• Examples: None.

B.5.19 neat_set_ecn

• Summary: Set the Explicit Congestion Notification value for this flow.

• Syntax:

1 neat_error_code neat_set_ecn(struct neat_ctx *ctx,

2 struct neat_flow *flow,

3 uint8_t ecn);

• Parameters:

– ctx: Pointer to a NEAT context.

– flow: Pointer to a NEAT flow.

106 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

– ecn: The ECN value to use for this flow.

• Return values: Returns NEAT_OK if the QoS class was set successfully. Returns

NEAT_ERROR_UNABLE if NEAT was not able to set the requested ECN value.

• Remarks: None.

• Examples: None.

B.5.20 neat_start_event_loop

• Summary: Starts the internal event loop within NEAT.

• Syntax:

1 neat_error_code neat_start_event_loop(struct neat_ctx *ctx, neat_run_mode

run_mode);

• Parameters:

– ctx: Pointer to a NEAT context.

– run_mode: The mode of which the event loop in NEAT should execute. May be one of either

NEAT_RUN_DEFAULT, NEAT_RUN_ONCE, or NEAT_RUN_NOWAIT.

• Return values: Returns NEAT_OK if the NEAT executed with no error. Returns an error value if

the internal event loop in NEAT was stopped due to an error.

• Remarks: This function does not return when executed with NEAT_RUN_DEFAULT. When exe-

cuted with NEAT_RUN_ONCE, NEAT will poll for I/O, and then block unless there are pending

callbacks within NEAT that are ready to be processed. These callbacks may be internal. When

executed with NEAT_RUN_NOWAIT, NEAT will poll for I/O and execute any pending callbacks. If

there are no pending callbacks, it returns after polling.

• Examples: None.

• See also: neat_stop_event_loop and neat_get_backend_fd

B.5.21 neat_stop_event_loop

• Summary: Stops the internal NEAT event loop.

• Syntax:

1 int neat_stop_event_loop(struct neat_ctx *ctx);

• Parameters:

– ctx: Pointer to a NEAT context.

• Return values: None.

• Remarks: Once called, no further events will be processed and no callbacks will be called until

neat_start_event_loop is called again.

• Examples: None.

• See also: neat_start_event_loop

107 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

B.5.22 neat_get_backend_fd

• Syntax:

1 int neat_get_backend_fd(struct neat_ctx *ctx);

• Parameters:

– ctx: Pointer to a NEAT context.

• Return values: Returns the file descriptor of the event loop used internally by NEAT. May be

polled to check for any new events.

• Remarks: Note that embedding this event loop inside another event loop may not be supported

on all systems.

• Examples: None.

• See also: neat_start_event_loop

B.5.23 neat_get_backend_timeout

• Summary: Return the timeout that should be used when polling the backend file descriptor.

• Syntax:

1 int neat_get_backend_timeout(struct neat_ctx *ctx);

• Parameters:

– ctx: Pointer to a NEAT context.

• Return values: Returns the number of milliseconds on which a poll operation may at most be

blocked on the backend file descriptor from libuv before the NEAT event loop should be executed

again to take care of timer events within NEAT.

• Remarks: The client_http_run_once example demonstrates the use of this function.

• Examples: None.

• See also: neat_get_backend_fd

B.5.24 neat_get_event_loop

• Summary: Return the internal NEAT event loop pointer.

• Syntax:

1 uv_loop_t neat_get_event_loop(struct neat_ctx *ctx);

• Parameters:

– ctx: Pointer to a NEAT context.

• Return values: Returns the the event loop used internally by NEAT.

• Examples: None.

• See also: neat_start_event_loop

108 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

B.5.25 neat_get_stats

• Summary: Return statistics from a NEAT context.

• Syntax:

1 neat_error_code neat_get_stats(

2 struct neat_ctx *ctx,

3 char **json_stats);

• Parameters:

– ctx: Pointer to a NEAT context.

– json_stats: Pointer to an address where address of the statistics may be written.

• Return values: Returns NEAT_OK.

• Remarks: The statistics is output in JSON format. The caller is responsible for freeing the buffer

containing the statistics.

• Examples: None.

B.5.26 neat_getlpaddrs

• Summary: Obtains the local or peer addresses of a flow.

• Syntax:

1 int neat_getlpaddrs(struct neat_ctx* ctx,

2 struct neat_flow* flow,

3 struct sockaddr** addrs,

4 const int local)

• Parameters:

– ctx: Pointer to a NEAT context.

– flow: Pointer to a NEAT flow.

– addrs: Pointer to variable for storing pointer to addresses to.

– local: Set to non-zero value for obtaining local addresses, set to 0 to obtain peer addresses.

• Return values: On success, neat_getlpaddrs() returns the number of addresses (local or re-

mote). In case of having obtained at least one address, a pointer to a newly allocated memory

area with the addresses will be stored into addrs. This memory area needs to be freed after

usage.

• Examples:

1 struct struct sockaddr* addrs;

2 int n = neat_getlpaddrs(ctx, flow, &addrs, 1);

3 if(n > 0) {

4 struct sockaddr* a = addrs;

5 for(int i = 0; i < n; i++) {

109 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

6 switch(a->sa_family) {

7 case AF_INET:

8 printf("Address %d/%d: IPv4\n", i, n);

9 a = (struct sockaddr*)((long)a + (long)sizeof(sockaddr_in));

10 break;

11 case AF_INET6:

12 printf("Address %d/%d: IPv6\n", i, n);

13 a = (struct sockaddr*)((long)a + (long)sizeof(sockaddr_in6));

14 default:

15 assert(false);

16 break;

17 }

18 }

19 free(addrs);

20 }

B.5.27 neat_log_level

• Summary: Set the log-level of the NEAT library.

• Syntax:

1 void neat_log_level(struct neat_ctx *ctx,

2 uint8_t level)

• Parameters:

– ctx: Pointer to a NEAT context.

– level: Log level of the log entry

* NEAT_LOG_OFF

* NEAT_LOG_ERROR

* NEAT_LOG_WARNING

* NEAT_LOG_DEBUG

• Return values: None.

• Examples:

1 neat_log_level(ctx, NEAT_LOG_ERROR);

• See also: neat_log_file

B.5.28 neat_log_file

• Summary: Sets the name of the log file.

• Syntax:

1 uint8_t neat_log_file(struct neat_ctx *ctx,

2 const char* file_name)

110 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

• Parameters:

– ctx: Pointer to a NEAT context.

– file_name: Name of the NEAT logfile. If set toNULL, NEAT writes the log output tostderr.

• Return values: RETVAL_SUCCESS: success; RETVAL_FAILURE: failure

• Examples:

1 neat_log_file(ctx, "disaster.log");

• See also: neat_log_level

111 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

C Main changes with respect to Deliverable D2.2

The following changes log summarises the main differences between D2.3 and D2.2 (which this doc-

ument updates). The list is not exhaustive, and several smaller changes in e.g. the description of NEAT

Components are omitted for brevity.

• Section 1.5 was added, providing an overview of connection teardown.

• Section 2.1 was updated with minor modifications to reflect the latest changes in the code and

online tutorial.

• Section 2.3: a presentation of Python bindings for the NEAT User API (developed after D2.2 was

finished) was added.

• Section 3.2.2 was expanded with new text and figures on the RawRTC library and its integration

in NEAT.

• Section 3.2.3 was renamed as “Local Flow Priority” and now includes the case of SCTP with trans-

parent flow mapping.

• Section 3.2.4: for clarity, Table 1 was added showing supported transport protocols and NEAT

security in the Core Transport System prototype.

• Section 3.4: the notion of NEAT PropertyArrays was added. Also, new text, figures and tables

were added for more clarity, e.g.:

– Table 3 was added showing REST API endpoints for external access to the Policy Manager.

– Table 4 was added showing Policy object keys.

– Figure 12 was added to illustrate the Policy Manager’s inputs and outputs.

• Appendix B was updated to reflect the latest changes in the NEAT API reference, in accordance

with the online API reference.

112 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

D Paper: NEAT: A Platform- and Protocol-Independent Internet Trans-

port API

The following research paper [29] has been produced by project participants.

113 of 131 Project no. 644334

Preprint (accepted version)

Published in IEEE Communications Magazine
http://www.comsoc.org/commag/

Please cite as:

N. Khademi, D. Ros, M. Welzl, Z. Bozakov, A. Brunstrom, G. Fairhurst, K.-J. Grinnemo,
D. Hayes, P. Hurtig, T. Jones, S. Mangiante, M. Tüxen, and F. Weinrank. “NEAT: A Platform-
and Protocol-Independent Internet Transport API”. IEEE Communications Magazine, vol. 55,
no. 6, pp. 46–54, 2017.

Digital Object Identifier: https://doi.org/10.1109/MCOM.2017.1601052

c© 2017 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

114 of 131 Project no. 644334

IEEE COMMUNICATIONS MAGAZINE, VOL. 55, NO. 6, JUNE 2017 2

NEAT: A Platform- and Protocol-Independent
Internet Transport API

Naeem Khademi, David Ros, Michael Welzl, Zdravko Bozakov, Anna Brunstrom, Gorry Fairhurst, Karl-Johan
Grinnemo, David Hayes, Per Hurtig, Tom Jones, Simone Mangiante, Michael Tüxen, and Felix Weinrank

Abstract—The sockets Applications Programming Interface
(API) has become the standard way that applications access the
transport services offered by the Internet Protocol stack. This
paper presents NEAT, a user-space library that can provide an
alternate transport API. NEAT allows applications to request the
service they need using a new design that is agnostic to the specific
choice of transport protocol underneath. This not only allows
applications to take advantage of common protocol machinery,
but also eases introduction of new network mechanisms and
transport protocols. The paper describes the components of the
NEAT library and illustrates the important benefits that can be
gained from this new approach. NEAT is a software platform for
developing advanced network applications that was designed in
accordance with the standardization efforts on Transport Services
(TAPS) in the Internet Engineering Task Force (IETF), but its
features exceed the envisioned functionality of a TAPS system.

I. INTRODUCTION

For more than three decades, the Internet’s transport layer
has essentially supported just two protocols and the original
design of the sockets API offered only two Transport Services
to applications. One service provided stream-oriented in-order
reliable delivery, manifested in TCP, and the other a message-
based unordered unreliable delivery, manifested in UDP.

Today, more than three decades later, these are the only two
transport protocols commonly offered by operating systems
to applications. UDP-based applications are used for a wide
variety of datagram services from service discovery to inter-
active multimedia, while TCP became the dominant protocol
for Internet services from web browsing to file sharing and
video content delivery. While their success has often been
attributed to the robustness of these protocols, during the
last decades new service requirements have emerged that are
beyond what TCP can deliver or UDP can offer—examples
include: an interactive multimedia application may prefer to
prioritize low latency over strictly reliable delivery of data, but
could use partially-reliable delivery to improve quality while
ensuring timeliness, or an application may be designed to take

Naeem Khademi and Michael Welzl are with the Department of Informatics,
University of Oslo, Norway. E-mail: {naeemk, michawe}@ifi.uio.no.

David Ros and David Hayes are with Simula Research Laboratory, Norway.
E-mail: {dros, davidh}@simula.no.

Zdravko Bozakov and Simone Mangiante are with Dell EMC, Ireland. E-
mail: {Zdravko.Bozakov, Simone.Mangiante}@dell.com.

Anna Brunstrom, Karl-Johan Grinnemo and Per Hurtig are with Karl-
stad University, Sweden. E-mail: {anna.brunstrom, karl-johan.grinnemo,
per.hurtig}@kau.se.

Gorry Fairhurst and Tom Jones are with the University of Aberdeen,
Aberdeen, United Kingdom. E-mail: {tom, gorry}@erg.abdn.ac.uk.

Michael Tüxen and Felix Weinrank are with Münster University of Applied
Sciences, Germany. E-mail: {tuexen, weinrank}@fh-muenster.de.

advantage of multihoming when this is available. UDP has
also emerged as a substrate upon which user-space transport
protocols are being developed—many customized for specific
applications (e.g., the QUIC protocol), where much effort can
be expended re-implementing common transport functions.

A handful of protocols have been proposed to provide
Transport Services beyond those of TCP and UDP; most
notably, SCTP, DCCP and UDP-Lite. However none of these
have seen widespread use or universal deployment. The reason
behind this is often attributed to ossification of the Internet’s
transport layer, where further evolution has become close to
impossible. This has two major aspects:

• Inflexibility of the current socket API: Application
programmers need to specify transport protocol-specific
configurations to request a desired service. This binding
to protocols inevitably requires programmers to recode
their applications to take advantage of any new transport
protocol. It also introduces complexity when there is a
need to customize for different network scenarios, and
choose appropriate transport protocol-specific parameters.

• Deployment vicious circle: New protocols and mech-
anisms cannot be expected to work in unmodified net-
works. Some equipment may need to be reconfigured,
updated or replaced to deploy a new protocol. Developers
seeking to use new protocols simply find they cannot
be relied upon to work across the Internet. Because
the current socket API requires application developers
to specifically choose a certain protocol, they therefore
tend to avoid using a protocol other than TCP or UDP,
knowing that any others are likely to be unsuccessful for
many network paths. This chicken-and-egg situation has
made it hard for unused transport protocols to become
deployed in the Internet—even if they would provide a
better service to some applications.

In this paper, we introduce the NEAT Library. This is
a software library built above the socket API to provide
networking applications with a new API offering platform-
and protocol-independent access to Transport Services. NEAT
is, to the best of our knowledge, the first prototype implemen-
tation of IETF standardization efforts on Transport Services
(TAPS), which we will discuss in Section V. NEAT and
its related standardization efforts in TAPS can re-enable the
evolution of the Internet’s transport layer because they break
the deployment vicious circle; NEAT’s flexible, customizable
API makes it easy to define and use novel services on top of
the socket API, seamlessly leveraging new transport protocols

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

115 of 131 Project no. 644334

IEEE COMMUNICATIONS MAGAZINE, VOL. 55, NO. 6, JUNE 2017 3

Application

NEAT User API

NEAT User Module

Policy

Policy
Manager

Policy
Information

Base

Characteristics
Information

Base

Selection Framework

Transport Signaling &
handover

...QUIC SCTP new transport

User-space transport API

TCPUDP SCTP new transport...

USER

KERNEL

IPv4 / IPv6

Kernel-level transport API

Po
lic

y
in

te
rf

ac
e

D
ia

gn
os

tic
s

&

st
at

is
tic

s
in

te
rf

ac
e

Fig. 1. The architecture of the NEAT System.

as they become available. This, in turn, may create a shift
in the traffic pattern seen by vendors and administrators of
middleboxes that could at some point lead them to support
such traffic. Section IV presents several examples of benefits
that NEAT offers to applications.

II. BACKGROUND

TCP and UDP are a part of the kernel of almost all
operating systems and are also supported by nearly all mid-
dleboxes. During its lifetime, TCP has been substantially
improved. However, the evolution of TCP has had to deal with
constraints. Changes to packet format have to consider that
middleboxes might block or limit communication. Therefore,
a fallback mechanism to the old packet format has become a
part of such protocol extensions. New protocol mechanisms
(e.g., congestion control or loss recovery mechanisms) mostly
focus on single-sided changes to allow faster deployment—
but the speed of deployment is still limited by the software
development cycle of operating systems.

In addition, having a feature available on an operating sys-
tem does not imply that it is made available to an application
running with user privileges; new features are often disabled
by default and turning them on requires special privileges since
it has host-wide consequences.

Because UDP provides only minimal services (port numbers
and a checksum), it is possible to use it as substrate to im-
plement transport protocols on top of it to introduce features;
this approach has become increasingly common. This leads
to every UDP-based application to some extent needing to
implement the same core set of functions [1]. However, it

also leads to per-application protocol stacks, where transport
protocols cannot easily be moved between applications (and
making this possible is often not in the interest of the applica-
tion developer). Developing an efficient transport protocol is
a difficult task which requires a number of features to be re-
implemented again and again. UDP-based transport protocols
have also done nothing to fix the general architectural problem:
the socket API’s protocol binding remains, typically with a
choice between only TCP and UDP.

Specific applications can require services not provided by
TCP. One example is the transport of signaling messages in
telephony signaling networks. This is used to transfer mostly
small messages and requires a high level of fault tolerance.
When a protocol stack for this application was developed,
a new transport protocol, SCTP [2], was created to fulfill
these specific requirements. It was possible to deploy SCTP in
these networks because there were no middleboxes, and kernel
implementations for the operating systems used in telephony
signaling networks were developed.

Currently, the IETF and the World Wide Web Consor-
tium (W3C) are developing WebRTC, a technology for
real-time multimedia communication directly between web
browsers. Non-media communication using SCTP is also
supported; to facilitate deployment across arbitrary Internet
paths, SCTP runs over UDP. Google has developed QUIC,
a UDP-based transport protocol with features including fast
connection setup, cross-layer optimized security, and a modern
congestion control and loss recovery mechanism. If QUIC fails
to traverse a middlebox, the web browser can fall back to using
TCP.

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

116 of 131 Project no. 644334

IEEE COMMUNICATIONS MAGAZINE, VOL. 55, NO. 6, JUNE 2017 4

1. Request to open flow & pass application requirements

2. Query PM about feasible transport candidates based
on destination domain name

3. PM determines available transport candidates that fulfil
policy (PIB) and cached information (CIB)

4. Return ranked list of feasible transport candidates as
pre-filter for address resolution

5. Resolve addresses

6. Query PM about feasible transport candidates for
resolved destination address

7. PM builds candidates, assigning priorities based on
PIB/CIB matches

8. Return ranked list of feasible transport candidates for
flow establishment

9. Do Happy Eyeballs with candidates, according to
specified priorities

10. Return handle to selected transport solution

11. Cache results from Happy Eyeballs in the CIB

Policy

Application

NEAT User API

Policy Manager

CIB

PIB

FrameworkSelection

1

1

2

3

3

4

5

6

7

8

9

11

11

10

10

7

Fig. 2. Simplified workflow showing how NEAT components interact when opening a flow.

By moving a transport protocol from the operating system
to the application (e.g., WebRTC and QUIC integrated in web
browsers), the release cycle can be substantially shortened,
the implementation becomes independent from the operating
system, and the protocol can be tailored to the specific
application. Using UDP encapsulation is the only option to
not using TCP and be able to traverse middleboxes.

This enables a larger variety of transport protocols to co-
exist and change over time, but does not help with the
issue of per-application protocol stacks mentioned before. An
application programmer has to add complexity to benefit from
advanced features in their application; this requires utilizing
different APIs, figuring out which protocols are supported by
the remote end-points, selecting protocol mechanisms, and
providing fallback mechanisms when these happen to not work
across the current network path. None of these are specific to
a particular transport protocol, but are related to the need for
the programmer to work with a variety of transport protocols.
This general problem could be addressed by defining a new
transport system, as outlined next.

III. RE-ENABLING EVOLUTION: INTRODUCING NEAT

As discussed above, using transport services beyond TCP
and UDP today puts a high burden on the application de-
veloper. The NEAT Library addresses this problem by pro-
viding application developers with one enhanced API that
is transport-protocol independent, with the library providing
support for selecting the best available transport option at
run-time and handling fallback between transport protocols
as needed. Running as a user-space library, NEAT can make
use of transports running both in user space and in the kernel,
all transparent to the applications. Protocols like SCTP are

already supported over many paths, but they cannot be easily
used by application programmers unless they are supported
over all paths. NEAT changes this by placing functions such
as selecting a transport and handling fallback below the API.
NEAT allows such functions to evolve with the network, rather
than be bound to specific applications.

Figure 1 provides a schematic view of the NEAT architec-
ture. Applications employ the NEAT User API to access trans-
port services. This API is located in the NEAT User Module,
which is the core of NEAT and comprises components that
together deliver services tailored to application requirements
at run-time. The components in the module are grouped in
five categories: Framework, Policy, Selection, Transport, and
Signaling & Handover.

Framework components provide basic functionality required
to use NEAT. They define the structure of the NEAT User API
and implement core library mechanisms. Applications provide
information about their requirements for a desired transport
service via this API.

Policy components comprise the Policy Information
Base (PIB), the Characteristics Information Base (CIB), and
the Policy Manager (PM). The function of the PM is to
generate a ranked list of connection candidates that fulfill
the application requirements while taking system and network
constraints into account and adhering to configured policies.
All policy components operate on so-called NEAT Properties,
which express requirements and characteristics throughout the
NEAT System. Each property is a key-value tuple with addi-
tional metadata indicating the priority (mandatory or optional)
and weight of the associated attribute.

Policies and profiles—stored in the PIB—extend and mod-
ify the property set associated with each connection candidate.

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

117 of 131 Project no. 644334

IEEE COMMUNICATIONS MAGAZINE, VOL. 55, NO. 6, JUNE 2017 5

In addition, the CIB repository maintains information about
available interfaces, supported protocols towards previously-
accessed destination endpoints, network properties and cur-
rent/previous connections between endpoints. The content of
the CIB is continuously updated by local and external CIB
sources.

Selection components choose an appropriate transport solu-
tion. The additional information provided by the NEAT User
API enables the NEAT Library to move beyond the constraints
of the traditional socket API, making the stack aware of what is
actually desired or required by the application. On the basis of
both the information provided by the NEAT User API and the
PM, candidate transport solutions are identified. The candidate
solutions are then tested by the Selection components, and the
one deemed most appropriate is then used.

Transport components are responsible for providing func-
tions to instantiate a transport service for a particular traffic
flow. They provide a set of transport protocols and other
necessary components to realize a transport service. While
the choice of transport protocols is handled by the Selection
components, the Transport components are responsible for
configuring and managing the selected transport protocols.

Signaling & Handover components can provide advisory
signaling to complement the functions of the Transport com-
ponents. This could include communication with middleboxes,
support for handover, failover and other mechanisms.

Figure 2 illustrates a simplified workflow, showing how the
NEAT components interact when an application initiates a new
flow. As follows from the above description, NEAT has an
evolvable architecture that opens up for the introduction of
new transport services and can enable interaction with network
devices to improve such services. NEAT also enables the
incremental introduction of new transport protocols, both in
the kernel and in user space, as the API is independent from
the underlying transport protocol.

IV. BENEFITS OF NEAT

Next, we present four examples of key benefits of using the
NEAT Library. First, NEAT provides an API that is simple to
use. This allows existing applications to be easily ported to
the NEAT Library, simplifying network communication and
reducing code complexity.

NEAT also provides automatic fallback using a Happy
Eyeballs (HE) mechanism. HE is a generic term for algorithms
that test for end-to-end support of a protocol X simply by
trying to use X, then falling back to a default choice Y
known to work if X is found to not work (e.g., after a
suitable timeout). This added functionality is lightweight and
has negligible cost compared to other communication tasks.
It allows applications to take advantage of the best available
transport solution and in turn enables transport innovation
(e.g., applications do not need to be recoded to use a new
transport feature or protocol that becomes available).

NEAT not only facilitates evolution of the transport pro-
tocols and introduction of new transport mechanisms, it can
also help enable innovation at the network layer. The higher-
level of abstraction offered by the NEAT User API eases

the path to utilizing Quality of Service (QoS) support for
UDP-based applications, and could be used to access other
network services should they become available (e.g., selec-
tion of the most cost-effective or secure path utilizing IPv6
provisioning-domain information). Applications and networks
can also leverage the flexible control provided by the Policy
components, for example to provide a generic interface for
exchanging information between external SDN controllers and
NEAT-enabled applications.

A. Porting applications to NEAT

The NEAT User API offers a uniform way to access
networking functionality, independent from the underlying
network protocol or operating system. Many common network
programming tasks like address resolution, buffer manage-
ment, encryption, connection establishment and handling are
built into the NEAT Library and can be used by any application
that uses NEAT.

Developers write applications using the asynchronous
and non-blocking NEAT User API, implemented using the
libuv [3] library which provides asynchronous I/O across
multiple-platforms.

As shown in Listing 1, users can request the services
that they expect from the network (e.g. low latency, reliable
delivery, a specific TCP congestion control algorithm) by
providing an optional set of properties to control the behavior
of the library.

static neat_error_code
on_connected(struct neat_flow_operations *ops)
{
// set callbacks to write and read data
ops->on_writable = on_writable;
ops->on_all_written = on_all_written;
ops->on_readable = on_readable;
neat_set_operations(ops->ctx, ops->flow, ops);
return NEAT_OK;
}

int
main(int argc, char *argv[])
{
// initialization of basic NEAT structures
struct neat_ctx *ctx;
struct neat_flow *flow;
struct neat_flow_operations ops;
ctx = neat_init_ctx();
flow = neat_new_flow(ctx);
memset(&ops, 0, sizeof(ops));

// callback when connection is established
ops.on_connected = on_connected;
neat_set_operations(ctx, flow, &ops);

// optional user requirements in JSON format
static char *properties = "{\"transport\":[\"SCTP\", \"TCP\"]}";
neat_set_property(ctx, flow, properties);

// connect
if (neat_open(ctx, flow, "127.0.0.1", 5000, NULL, 0)) {
fprintf(stderr, "neat_open failed\n");
return EXIT_FAILURE;
}

// start libuv loop
neat_start_event_loop(ctx, NEAT_RUN_DEFAULT);

neat_free_ctx(ctx);

return EXIT_SUCCESS;
}

Listing 1. Code example from a simple client using the NEAT API.

The NEAT Library then uses a set of internal components
to establish a connection over the network. To make an

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

118 of 131 Project no. 644334

IEEE COMMUNICATIONS MAGAZINE, VOL. 55, NO. 6, JUNE 2017 6

appropriate selection, the Policy Manager maps user properties
to policies and computes a set of candidate transports that can
satisfy the request. NEAT also can utilize policy information
directly set by the user, system administrator or developer.

Connections to a peer endpoint are made by creating a
new flow, which is a bidirectional link between two endpoints
similar to a socket in the traditional Berkeley Socket API but
not strictly tied to an underlying transport protocol.

The NEAT API executes callbacks in the application when
an event from the underlying transport happens, creating a
more natural and less error-prone way of network program-
ming than with the traditional socket API. The three most
important callbacks in the NEAT API are on_connected,
called once the flow has connected to a remote endpoint;
on_readable and on_writable, called once data may
be written to or read from the flow.

Our experience with NEAT shows a reduction of the code
size by ≈ 20% for each application, as the library streamlines
a number of connection establishment steps. For example, the
single function call neat_open requests name resolution and
all other functions required before communication can start,
hiding complex boilerplate code. Ported applications remain
fully interoperable with regular TCP/IP-based implementa-
tions, while being able to take advantage of NEAT functions.
Besides, they can benefit from support for alternative trans-
ports, when available, relieving programmers from dealing
with fallbacks between protocols. Finally, a traditional socket-
based shim layer has been implemented on top of NEAT to
allow legacy applications to make use of NEAT functionalities
through policies without requiring direct porting to the NEAT
API.

B. Happy Eyeballs: A Lightweight Transport Selection Mech-
anism

Selection components employ a HE mechanism to enable
a source host to determine whether a transport protocol is
supported along the current network path. This allows appli-
cations to benefit from advances in transports that may be
only partially deployed in the Internet. The HE mechanism
used by NEAT is similar to that introduced to facilitate IPv6
adoption [4], but works at the transport layer to select one
of a set of connection-oriented transport solutions. The Selec-
tion components receive a ranked list of potential candidates
generated by the PM, where a higher ranking indicates a
better match with application and policy requirements. The
HE mechanism then concurrently tries each transport solution
from the list, delaying initiation of lower-priority transport
solutions.

Figure 3 shows the HE mechanism in a scenario where the
best transport to the destination is unknown and current policy
dictates that the HE process is used to select between TCP
and SCTP, but preferring SCTP. The initiation of the TCP
connection is delayed for a time interval governed by policy,
specifying a difference in priority between candidate protocols.
If the SCTP connection does not complete within the time
interval, a TCP connection is also started. The first transport
to complete a connection is selected and becomes the transport

App. NEAT Server

Open

PM builds
candidate list
(see 2-8 Fig. 2)

HE_T STCP
Open SCTP

SCTP INIT

TCP
Open TCP

SCTP INIT+ACK

TCP SYN

TCP SYN+ACK
SCTP success SCTP COOKIE-ECHO

Transport handle

TCP success

TCP ACK
Cache
Results

close TCP

TCP FIN

Fig. 3. Message Sequence Chart (MSC) illustrating the NEAT Happy Eyeballs
(HE) transport selection process when selecting between TCP and SCTP,
SCTP preferred.

of choice. Once connectivity is established, other methods are
abandoned, and their connections closed.

To avoid wasting network resources by routinely attempting
concurrent connections, HE instructs the Policy components to
cache the outcome of each selection result in the CIB for a
configurable amount of time. After expiry of the time, the
selection is removed from the cache, re-enabling HE.

Consider the scenario in Figure 3. Attempting selection
when there is no existing cache entry requires extra resources,
potentially resulting in opening connections for each candidate
transport protocol. In this example, SCTP completes first and
the TCP connection is closed having sent no data. With typical
web traffic and worst-case packet sizes, byte overhead is as
small as ≈ 1%. For a cache hit rate of 80%, this reduces further
to ≈ 0.2%. A detailed evaluation of the impact of HE in terms
of memory and CPU utilization can be found in [5], where it
is shown that CPU costs are relatively small (especially when
considering the cost of TLS encryption), and that HE has only
a minor impact on memory consumption.

C. Deployable QoS with NEAT
Network QoS is often used for traffic engineering, but few

applications have managed to exploit this technology beyond
a controlled network environment. One major obstacle is the
lack of a consistent high-level API.

There have been attempts to add methods that directly
associate QoS with IP traffic (e.g., [6], [7]), but they have seen
little to no adoption. A key challenge is how to express the
service requirements, while still enabling policy to influence
choice and providing flexibility when the network is unable to
directly satisfy the requirements.

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

119 of 131 Project no. 644334

IEEE COMMUNICATIONS MAGAZINE, VOL. 55, NO. 6, JUNE 2017 7

neat-streamer

GST

Video in

Video out

Decode

Encode
RTP

Application code

Application
state NEAT flow

NEAT User Module

Se
le

ct
io

n
Po

lic
y

Tr
an

sp
or

t

Fr
am

ew
or

k

N
EA

T
U

se
r A

PI

neat-streamer peer
DSCP = 0 (BE)

DSCP = 46 (EF)

Fig. 4. Example of neat-streamer using QoS fallback with NEAT. The application sets up the media pipeline and uses NEAT to transfer data across the
network, according to the requested service. The NEAT Library could try to send UDP datagrams with a DSCP set to High Priority Expedited Forwarding
(EF). A timer triggers the NEAT Library to query the application status, which then reveals the application failed to use this DSCP, so NEAT can now try
the next DSCP value, Default (BE). When the timer again triggers, the application reports success and this code point continues to be used.

The NEAT API can allow applications to specify QoS
requirements. This can, for example, utilize policy information
to drive an appropriate Differentiated Service Code Point
(DSCP). The finally chosen DSCP can be based on both static
policy and dynamic information collected from connections
using NEAT.

The NEAT fallback mechanism can be used with any data-
gram services to enable the NEAT Library to select between a
list of candidate datagram transports, network encapsulations
and interfaces. This can assist an application to robustly find
desirable connection parameters for any path by transparently
falling back to alternative services when required (resembling,
but different to the NEAT HE function for connection-oriented
transports).

Neat-streamer [8] is a demo application that utilizes the
NEAT Library for live streaming video over connectionless
transports using the GStreamer (GST) media libraries. GST
is a pipeline-based media system that supports a wide range
of audio and video formats and other functions via a plugin
system.

Figure 4 shows the interactions between NEAT and neat-
streamer running on a network that drops traffic with certain
DSCP values set.

Because neat-streamer uses NEAT, it can indicate the QoS
treatment that it requires for each media flow, and the endpoint
to which it wishes to stream. NEAT provides the required QoS
marking and may determine which transport service to use
(e.g., choosing between UDP-Lite, UDP, or use of Traversal
Using Relays around NAT, TURN), and whether security
functions are required.

NEAT also provides the protocol machinery to update
the selected flow parameters should network connectivity
problems be reported by the application. A timer triggers a
callback function within the application to determine whether
the application believes the network is delivering the service
it requires (in many cases, only the application is aware of the
performance reported by a remote datagram receiver). When
an application reports failure it can allow NEAT to use the
list of candidates, and potentially other information (e.g., held

within the CIB) to search for alternate parameters.

D. SDN Integration

The ability of enabling external sources to query and
augment the state of the Policy Manager is a key design
choice of the NEAT architecture. As a consequence, NEAT-
enabled end-hosts can be seamlessly integrated in centrally
controlled environments, such as Software-Defined Networks
(SDNs). In such environments, logically centralized controllers
aim to maintain a global view of the network and optimize its
utilization. To achieve this, controllers ideally require detailed
and up-to-date knowledge of available resources, in addition to
the requirements and characteristics of deployed applications.
Today, controllers rely on time-consuming and error-prone
heuristics to infer the association between applications, their
requirements, and observed flows.

In this context, the benefit of the NEAT approach is three-
fold. Firstly, NEAT applications may inform controllers di-
rectly about their particular requirements towards the network.
In NEAT, such requirements are defined either explicitly by
application developers, or through suitable system policies.
This strategy can reduce the need for network controllers to
guess how to treat individual flows. Secondly, through the
Policy Manager CIB, NEAT enables controllers to supply
applications with detailed information about the state of paths
available to the host. In the absence of this feedback, metrics
such as available bandwidth or latency may need to be in-
ferred individually by each application through measurements.
Finally, the controller gains the ability to deploy policies at the
host level which influence the transport protocols, interfaces
and associated parameters used in NEAT applications.

All mechanisms necessary for exchanging information be-
tween the controller and NEAT-enabled applications are imple-
mented in Policy components. Specifically, the Policy Interface
is exposed through a REST API, enabling external entities
to push information to the PIB and CIB and query their
contents. As a result, for each flow request created by a NEAT
application, the Policy Manager will utilize the latest policies

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

120 of 131 Project no. 644334

IEEE COMMUNICATIONS MAGAZINE, VOL. 55, NO. 6, JUNE 2017 8

Data center network infrastructure

NEAT-aware
network

controller
network information

application requirements

bulk-transfer flows

NEAT-
enabled

applications

NEAT-
enabled

applications

application requirements

network information

NEAT User
Module

Policy
interface

NEAT User
Module

Policy
interface

low-latency flow

Fig. 5. SDN architecture in which a controller uses the NEAT Library to supply end-hosts with information about the available network resources, and to
collect information about the application requirements.

and network attributes supplied by a controller to select the
most suitable connection option. Similarly, the API allows
the controller to query the CIB to identify the requirements
associated with specific application flows or relevant policies
configured in the PIB.

To demonstrate the feasibility of the aforementioned con-
troller integration we have implemented a scenario comprised
of NEAT-enabled hosts deployed in an OpenFlow SDN net-
work. The aim of the scenario, depicted in Figure 5, is to
enable a controller to steer the handling of bulk traffic flows.
Each host runs a NEAT-enabled data replication application
which provides the estimated flow size as part of the NEAT
API call. We used the OpenDaylight framework to imple-
ment a controller which monitors the network utilization and
calculates a data volume threshold above which flows are
considered as bulk flows. We implemented a northbound API
and periodically publish a policy to the NEAT end hosts. The
policy is triggered when the flow size exceeds the threshold
and forces the flows to be tagged with a predefined DSCP
marking. As a result, flows affected by the policy are routed
through a pre-provisioned network path.

V. STANDARDIZATION

Recognizing the need for the transport layer (socket) in-
terface to become protocol-independent, the IETF chartered a
working group called “Transport Services” (TAPS) in Septem-
ber 2014. A common approach in prior work was to start
analysis based on the needs of applications. Instead, TAPS
used a methodology that started from a survey of the services
offered by available IETF transport protocols [9]. It is currently
documenting the primitives and parameters used to access
features of a subset of these protocols [10] to form a basis for
the design of a protocol-independent API. NEAT developers
have been actively contributing to this initiative based on

experience of using the NEAT API, which shares many of
the goals behind development of TAPS.

The working group is now shortening the list of transport
features. Examples of features include “Specify ECN field”
or “Choice between unordered (potentially faster) or ordered
delivery of messages”. A recent contribution by NEAT devel-
opers [11] recommends against exposing a transport feature
in the API when either choosing or configuring it requires
knowledge specific to the network path or the operating
system, but not the application. A final step will eliminate
features specific to a particular protocol that cannot reasonably
be implemented using a different protocol—such features con-
tradict the main purpose of TAPS, to be protocol-independent.
At the end of this process, this will result in a subset of
transport features that end systems supporting TAPS need to
provide. NEAT implements all services specified in the current
TAPS documents and may therefore be regarded as a prototype
implementation of TAPS.

TAPS is also chartered to define experimental support
mechanisms, for example to select and engage an appropriate
protocol and discover the set of protocols available for a
selected service between a given pair of endpoints, to allow
the operating system to choose between protocols (e.g., HE
and application-level feedback mechanisms). This approach
of breaking the binding between applications and transport
protocols is an important final step for TAPS.

VI. CONCLUSION

The service needs of today’s Internet applications range
well beyond the basic ones provided by TCP and UDP.
Yet, the Internet’s transport layer, as it presents itself to a
developer via the socket API, has remained unchanged. This
has led to per-application (and per-company) developments
in user space, over UDP, such as QUIC for Google Chrome.
While these new UDP-based transport protocols have recently

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

121 of 131 Project no. 644334

IEEE COMMUNICATIONS MAGAZINE, VOL. 55, NO. 6, JUNE 2017 9

pushed the transport layer into the spotlight, they are also
only silo solutions which do nothing to solve the architectural
ossification problem: the socket API binds applications to
protocols at design time—therefore, transport protocols cannot
be replaced without changing applications.

In this paper we presented the NEAT Library, which lets
application developers access features of transport protocols
in a simple and uniform way. NEAT helps freeing developers
from platform or protocol dependencies; they do not have to
worry about the specifics of each protocol or operating system;
they also do not need to worry about whether a protocol
works on a given path. Underneath the NEAT User API, new
protocols can seamlessly be inserted, automatically yielding
benefits to the application on top. With NEAT’s clear layer
separation, the Internet’s transport layer can finally evolve
again.

At the time of writing, prototype code for all component
types has been developed for several Unix-like OSs. Besides
neat-streamer, the NEAT development team has ported ex-
ample applications to NEAT for early testing, including the
Nghttp2 [12] web server and client, several smaller appli-
cations like HTTP/HTTPS clients and performance measure-
ment tools; also, a NEAT-supported Firefox implementation
is currently under development by Mozilla. NEAT is an
open-source project that welcomes contributions. Source code,
documentation and implementation status can be found on
GitHub [13].

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their useful remarks.

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No. 644334 (NEAT). The views expressed are
solely those of the author(s).

REFERENCES

[1] L. Eggert and G. Fairhurst, “Unicast UDP Usage Guidelines for
Application Designers,” RFC 5405 (Best Current Practice), Internet
Engineering Task Force, Nov. 2008, accessed on February 23, 2017.
[Online]. Available: http://www.ietf.org/rfc/rfc5405.txt

[2] R. Stewart, “Stream Control Transmission Protocol,” RFC 4960
(Proposed Standard), Internet Engineering Task Force, Sep. 2007,
accessed on February 23, 2017. [Online]. Available: http://www.ietf.
org/rfc/rfc4960.txt

[3] libuv — Cross-platform Asynchronous I/O. Accessed on February 23,
2017. [Online]. Available: https://libuv.org/

[4] D. Wing and A. Yourtchenko, “Happy Eyeballs: Success with Dual-
Stack Hosts,” RFC 6555 (Proposed Standard), Internet Engineering
Task Force, Apr. 2012, accessed on February 23, 2017. [Online].
Available: http://www.ietf.org/rfc/rfc6555.txt

[5] G. Papastergiou, K.-J. Grinnemo, A. Brunstrom, D. Ros, M. Tüxen,
N. Khademi, and P. Hurtig, “On the Cost of Using Happy Eyeballs
for Transport Protocol Selection,” in Proceedings of the 2016 Applied
Networking Research Workshop (ANRW). Berlin: ACM, Jul. 2016, pp.
45–51.

[6] H. Abbasi, C. Poellabauer, K. Schwan, G. Losik, and R. West,
“A Quality-of-service Enhanced Socket API in GNU/Linux,” in 4th
Real-Time Linux Workshop, 2002, accessed on February 23, 2017.
[Online]. Available: https://www.osadl.org/fileadmin/events/rtlws-2002/
proc/g08_abbasi.pdf

[7] P. Gomes Soares, Y. Yemini, and D. Florissi, “QoSockets: A New Exten-
sion to the Sockets API for End-to-end Application QoS Management,”
Computer Networks, vol. 35, no. 1, pp. 57–76, 2001.

[8] Neat-streamer Video Workload Tool. Accessed on February 23, 2017.
[Online]. Available: https://github.com/uoaerg/neat-streamer

[9] G. Fairhurst, B. Trammell, and M. Kühlewind, “Services provided by
IETF transport protocols and congestion control mechanisms,” Internet
Engineering Task Force, Internet-Draft draft-ietf-taps-transports-11,
Sep. 2016, work in Progress. Accessed on February 23, 2017. [Online].
Available: https://tools.ietf.org/html/draft-ietf-taps-transports-11

[10] M. Welzl, M. Tüxen, and N. Khademi, “On the Usage of Transport
Service Features Provided by IETF Transport Protocols,” Internet En-
gineering Task Force, Internet-Draft draft-ietf-taps-transports-usage-01,
Jul. 2016, work in Progress. Accessed on February 23, 2017. [Online].
Available: https://tools.ietf.org/html/draft-ietf-taps-transports-usage-01

[11] S. Gjessing and M. Welzl, “A Minimal Set of Transport Services
for TAPS Systems,” Internet Engineering Task Force, Internet-Draft
draft-gjessing-taps-minset-03, Oct. 2016, work in Progress. Accessed
on February 23, 2017. [Online]. Available: https://tools.ietf.org/html/
draft-gjessing-taps-minset-03

[12] T. Tsujikawa. Nghttp2: HTTP/2 C Library. https://nghttp2.org/. Accessed
on February 23, 2017.

[13] NEAT GitHub public repository. Accessed on February 23, 2017.
[Online]. Available: https://github.com/NEAT-project/neat

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

122 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

E Paper: On the Cost of Using Happy Eyeballs for Transport Protocol

Selection

The following research paper [33] has been produced by project participants.

123 of 131 Project no. 644334

On the Cost of Using Happy Eyeballs for Transport
Protocol Selection

Giorgos Papastergiou†, Karl-Johan Grinnemo‡, Anna Brunstrom‡, David Ros†,
Michael Tüxen?, Naeem Khademi∗, Per Hurtig‡

†Simula Research Laboratory, ‡Karlstad University, ?Fachhochschule Münster, ∗University of Oslo

{gpapaste, dros}@simula.no, {karl-johan.grinnemo, anna.brunstrom,
per.hurtig}@kau.se, tuexen@fh-muenster.de, naeemk@ifi.uio.no

ABSTRACT
Concerns have been raised in the past several years that
introducing new transport protocols on the Internet has be-
come increasingly difficult, not least because there is no
agreed-upon way for a source end host to find out if a trans-
port protocol is supported all the way to a destination peer.
A solution to a similar problem—finding out support for
IPv6—has been proposed and is currently being deployed:
the Happy Eyeballs (HE) mechanism. HE has also been
proposed as an efficient way for an application to select
an appropriate transport protocol. Still, there are few, if
any, performance evaluations of transport HE. This paper
demonstrates that transport HE could indeed be a feasible
solution to the transport support problem. The paper evalu-
ates HE between TCP and SCTP using TLS encrypted and
unencrypted traffic, and shows that although there is indeed
a cost in terms of CPU load to introduce HE, the cost is rel-
atively small, especially in comparison with the cost of using
TLS encryption. Moreover, our results suggest that HE has
a marginal impact on memory usage. Finally, by introduc-
ing caching of previous connection attempts, the additional
cost of transport HE could be significantly reduced.

CCS Concepts
•Networks → Transport protocols; Network perfor-
mance evaluation;

Keywords
Transport-protocol selection, Happy Eyeballs, TCP, SCTP,
TLS, CPU load, memory usage.

1. INTRODUCTION
The deployment of new transport protocols on the Inter-

net is not a trivial task. Several hurdles have to be cleared
before a new transport can be used between an arbitrary

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ANRW ’16, July 16 2016, Berlin, Germany
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4443-2/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2959424.2959437

pair of end hosts and see wide adoption. One of the main
issues that has to be solved is, how can an end host know if
a new protocol X is supported along the whole end-to-end
path, including the remote host? In the absence of a pri-
ori knowledge or explicit signaling, the only way to know
whether X works is to try it.

Testing a set of candidate protocols can be done serially—
e.g., try first with the preferred choice X and, if the attempt
fails after a suitable timeout, then fall back to a default
alternative Y. Since a connection timeout can introduce a
delay of up to tens of seconds, serializing attempts can in-
cur a large latency penalty when the new protocol X is not
supported, stalling the application until the subsequent con-
nection trial succeeds.

The Happy Eyeballs (HE) mechanism was introduced as
a means to facilitate IPv6 adoption [13]. Dual-stack client
applications should be encouraged to try setting up connec-
tions over IPv6 first, and fall back to using IPv4 if IPv6
connection attempts fail. However, serializing tests for IPv6
and IPv4 connectivity can result in large connection latency.
Happy Eyeballs for IPv6 minimizes the cost in delay by par-
allelizing attempts over IPv6 and IPv4.

TCP SYN

SCTP INIT

TC
P

SY
N+

AC
K

SCTP

INIT+ACK

TCP ACK
TCP RST

SCTP COOKIE-ECHO

SC
TP

 C
OOKI

E-
AC

K

time
client

server

Figure 1: HE for selecting between SCTP and TCP,
with SCTP being the preferred choice.

The basic idea behind Happy Eyeballs for IPv6 can be
extended to discover support for transport protocols, and
in particular to allow an application to use SCTP when
it is available end-to-end, else revert to TCP when it is
not [11,12]. Figure 1, adapted from [12], depicts how HE for
transport selection may work. An end host simultaneously
initiates a TCP connection and an SCTP association; it is
assumed that the SYN+ACK arrives before the INIT-ACK.
If SCTP (the preferred choice) is supported, the TCP con-
nection is abandoned1. Similar to what is done in actual

1The figure assumes there is a mechanism to notify the ap-
plication about the reception of the SCTP INIT-ACK, so the

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

124 of 131 Project no. 644334

implementations of HE for IPv6 [10], a small delay may be
introduced to give an advantage to SCTP over TCP [14];
else, the host can just pick the protocol for which a response
(TCP SYN+ACK, SCTP INIT-ACK) arrives first.

This paper focuses on the performance penalties intro-
duced by HE for transports. In particular, we study the im-
pact that a HE mechanism for selecting between TCP and
SCTP may have on CPU load and memory usage at a des-
tination end-host. Our results provide empirical arguments
in favor of using such a mechanism for transport selection.

The rest of the paper is organized as follows. Section 2
provides some background and motivation for introducing a
transport HE mechanism. As follows from this discussion,
two major concerns about transport “happy-eyeballing” are
higher CPU load and memory usage. In Section 3 we assess
these concerns by experimentally evaluating HE between
TCP and SCTP. Finally, Section 4 concludes the paper.

2. BACKGROUND
Some thirty years back, there were two Internet trans-

port protocols to choose from: TCP and UDP. Since these
two protocols basically represent the opposites in the ser-
vices they provide—TCP provides a reliable, in-order, byte-
stream oriented delivery service and UDP an unreliable, un-
ordered message delivery—the selection between these two
protocols from an application viewpoint was mostly straight-
forward. Furthermore, it could be expected that all hosts
supported both TCP and UDP, and there were no middle-
boxes altering or blocking the traffic before it reached its
final destination.

Today, the Internet looks rather different. The number of
standard transport protocols and their options (and the dif-
ferent services they may provide) has increased, making the
selection of a suitable transport less straightforward. New
transports may allow to provide improved services to appli-
cations, but middleboxes such as firewalls, NATs and load
balancers have become an integral part of the Internet, and
there is a great diversity in how they are configured and de-
ployed; it cannot be assumed that any transport or transport
option can safely make it from sender to receiver.

As mentioned in Section 1, although HE was primarily
introduced as a way to promote the use of IPv6, it has also
been proposed as a way for an application to efficiently se-
lect transports [11, 12]. Wing and Yourtchenko [11] provide
recommendations for HTTP clients on how to seamlessly mi-
grate from TCP to SCTP without any adverse impact on the
user experience. Moreover, they propose a way to combine
an IPv6/IPv4 HE with a TCP/SCTP HE for a web browser
running on a dual-stack machine [12]. Also worth mention-
ing in this context is the work carried out by the Transport
Services (TAPS) working group of the IETF [8]. One of
this working group’s planned documents should “[. . .] ex-
plain how to select and engage an appropriate protocol and
how to discover which protocols are available for the selected
service between a given pair of end points [. . .]”, something
which will likely require HE between transport solutions.

Still, a HE transport-selection mechanism does raise ques-
tions about increased CPU usage and memory consumption.

application can then abort the TCP connection by sending
a TCP Reset. Without such mechanism, the TCP connec-
tion can only be aborted after the full four-way handshake
of SCTP is completed.

ANRW 2016 - EXPERIMENT SETUP Karl-Johan Grinnemo | May 22, 2016

100 Mbps

Web Client
(Ubuntu Linux 14.04 LTS)

Network Emulator
(Ubuntu Linux 14.04 LTS)

100 Mbps

Web Server
(FreeBSD 11)

Web Test App netem lighttpd

Figure 2: Experiment setup.

When HE is used, a single connection request from the ap-
plication might result in several concurrent transport con-
nection requests, i.e., not just one connection request at a
time as is the case when HE is not used. Hence, the use of
HE could result in an increase in both CPU and memory us-
age. Baker [3] provides recommendations on how to evaluate
IPv4/IPv6 HE, however, metrics like CPU load and memory
usage are not considered in [3]. Note that neither of these
are key metrics for IP HE, whereas they are for transport
HE—this is so because transport connection setup means
creating state in end points. There have been a few discus-
sions of the performance of HE for IPv6/IPv4 [1,2,4,7] but,
to the best of our knowledge, this paper is the first to focus
on performance aspects of transport-layer HE, in terms of
CPU load and memory usage.

A HE transport-selection mechanism also raises questions
about increased use of network resources, a key issue for
the scalability of HE. For instance, the aforementioned HE
proposal by Wing et al. [12] transmits four packets for every
application connection request. Still, as already pointed out
by Wing et al. [11,13,14], HE network resource usage should
be mitigated by the use of caching.

3. EVALUATION
This section evaluates HE between TCP and SCTP in

terms of CPU load and memory usage. The section begins
with a description of the experiment setup and the studied
test scenarios. The remainder of the section presents and
comments on the results from the execution of these scenar-
ios.

3.1 Experiment Setup
In our experiment, we modeled a single wide-area network

path to an upstream Web server. The laboratory network
used in our experiment is shown in Figure 2. The three
machines in the experiment were of type: Dell Optiplex
9020 with 3.60 GHz Intel Core i7-4790 (quad core) proces-
sors. The Web Client and Network Emulator machines ran
Ubuntu Linux 14.04 LTS with kernel 3.13.0, and the Web
Server machine ran FreeBSD 11 (revision r294499). All ma-
chines used the default network kernel settings, except those
listed in Table 1. These changes assured that the testbed
could properly support the connection rates considered in
this work, and disabled all SCTP features that were not
needed in the experiments. The Network Emulator machine
used netem to emulate a propagation delay of 20 ms.

The Web Client hosted a custom-designed Web traffic
generator in which two modified versions of the httperf [6]
web traffic generator (one that supports TCP and one that
supports SCTP) were combined to implement the studied
test scenarios. HTTP/1.0 with the Keep-Alive option en-
abled was used in both httperf programs. The FreeBSD
server hosted a lighttpd [9] server, modified to listen for
both TCP and SCTP HTTP/1.0 unencrypted and TLS-
encrypted requests. The lighttpd server was also modified

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

125 of 131 Project no. 644334

Table 1: Kernel Settings
Web Server Settings

net.inet.tcp.syncache.hashsize 2048
kern.ipc.somaxconn 4096
net.inet.sctp.pr_enable 0
net.inet.sctp.ecn_enable 0
net.inet.sctp.outgoing_streams 1
net.inet.sctp.incoming_streams 1
net.inet.sctp.asconf_enable 0
net.inet.sctp.auth_enable 0
net.inet.sctp.reconfig_enable 0
net.inet.sctp.nrsack_enable 0
net.inet.sctp.pktdrop_enable 0

Web Client Settings

net.ipv4.ip_local_port_range 10000 61000
net.ipv4.tcp_tw_recycle 1

Network Emulator Settings

net.ipv4.ip_forward 1

Table 2: lighttpd Settings
Configuration Parameter Settings

server.network-backend writev
server.event-handler kqueue
server.max-fds 4096
server.max-connections 2048
server.max-worker 7
ssl.use-sslv2 disable
ssl.use-sslv3 disable

so that the Nagle algorithm was disabled on all listen sock-
ets to assure that there were no additional delays in total
connection time. The default configuration parameters of
the lighttpd server were used, except those listed in Table 2,
which assured that the lighttpd server could efficiently han-
dle the HTTP request rates considered in the experiments
and that TLS was always preferred. The OpenSSL library
v1.0.1e was used for the TLS protocol. The preferred ci-
pher suite was ECDHE-RSA-AES128-GCM-SHA256, while
Intel’s AES New Instructions (AES-NI) set for hardware
accelerated AES operations was utilised [5]. The lighttpd
server used the FreeBSD kernel SCTP implementation, and
the Web traffic generator used the Linux kernel SCTP im-
plementation.

An experiment run lasted for 600 s, during which the Web
traffic generator generated exponentially distributed HTTP
requests with a fixed average intensity, and with requested
Web object sizes of 1 KiB and 35 KiB. In our experiment,
we considered HTTP-request intensities ranging between
100 requests/s and 1000 requests/s. We measured:

• the total CPU load on the server,

• the CPU utilisation of every process that has a sub-
stantial contribution to the total CPU time,

• the total kernel memory used for networking.

Per-process CPU utilisation was sampled every 20 s and
was calculated based on the accumulated CPU time given by

Table 3: Malloc types and zones
Command Malloc type / Zone

vmstat -m filedesc, kqueue, ip6opt, ip6ndp,
pcb, BPF, ifnet, ifaddr,
ether multi, lltable, routetbl, igmp,
in mfilter, in multi, ip moptions,
sctp map, sctp stri, sctp stro,
sctp a it, sctp atcl, sctp atky,
sctp athm, sctp vrf, sctp ifa,
sctp ifn, sctp timw, sctp iter,
sctp socko, hostcache, in6 mfilter,
in6 multi, ip6 moptions, mld,
inpcbpolicy, ipsecpolicy

vmstat -z KNOTE, socket, udp inpcb, ud-
pcb, tcp inpcb, tcpcb, tcptw, syn-
cache, hostcache, sackhole, tcpre-
ass, sctp ep, sctp asoc, sctp laddr,
sctp raddr, sctp chunk, sctp readq,
sctp stream msg out, sctp asconf,
sctp asconf ack, selfd

netstat -m mbufs, mbuf clusters, 4k jumbo
clusters, 9k jumbo clusters and 16k
jumbo clusters

procstat -r. The total CPU load on the server was measured
by measuring the accumulated CPU time of the idle sys-
tem process (i.e., the total time that the CPU was idle) and
subtracting this time from the total available CPU time dur-
ing the measured interval (i.e., 160 s for an 8 parallel thread
CPU). Total kernel memory utilisation was also sampled ev-
ery 20 s and was calculated based on the output of vmstat -z,
vmstat -m, and netstat -m. Table 3 outlines the malloc types
and zones that were used to calculate total network-related
kernel memory utilisation.

Our experiment comprised three test cases. In the first
case, we evaluated a naive HE mechanism that did not em-
ploy caching of the outcome of previous happy eyeball in-
vocations and which always resulted in a TCP connection
being set up. The rationale behind this case was to serve
as a baseline for the remaining two cases. Next, in the sec-
ond test case, we still considered the same naive HE mech-
anism as in the first case, however, this time we evaluated
happy eyeballing between TLS-encrypted TCP and SCTP.
The second test case aimed at providing an appreciation of
how the increase in CPU load and memory usage due to
happy eyeballing compares with that caused by the TLS en-
cryption itself. Lastly, in the third test case, we evaluated
an optimized HE mechanism that employed caching of the
outcome of previous connection attempts, using TCP and
SCTP both with and without TLS encryption. The purpose
behind the third test case was to obtain an understanding
of the extent to which HE CPU load and memory usage de-
crease with caching, and to get a feel for the overhead of HE
with a more optimized implementation. In this test case, we
considered three different outcomes of the HE mechanism:
HE always results in a TCP connection being set up (HE-
TCP); HE always results in an SCTP connection being set
up (HE-SCTP); and, HE results in a TCP connection being
set up half the time and an SCTP connection half the time
(HE-50%).

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

126 of 131 Project no. 644334

0

1

2

3

4

5

6

7

8

9

10

TCP SCTP HE-‐TCP TCP SCTP HE-‐TCP TCP SCTP HE-‐TCP TCP SCTP HE-‐TCP

100 400 700 1000

CP
U
	 u
til
is
at
io
n	
(%

)

Average	 request	 rate	 (requests/s)

Requested	 object	 size	 =	 1	 KByte
Requested	 object	 size	 =	 35	 KBytes

(a) CPU utilisation.

0

5

10

15

20

25

30

35

TCP SCTP HE-‐TCP TCP SCTP HE-‐TCP TCP SCTP HE-‐TCP TCP SCTP HE-‐TCP

100 400 700 1000

Ke
rn
el
	 m

em
or
y	
us
ag
e	
(M

By
te
s)

Average	 request	 rate	 (requests/s)

Requested	 object	 size	 =	 1	 KByte
Requested	 object	 size	 =	 35	 KBytes

(b) Kernel memory usage.

Figure 3: The results for the basic test case.

3.2 The Basic Test Case
The outcome of the basic test case is shown in Figure 3.

Figure 3(a) compares the CPU load of HE between TCP
and SCTP with that of single TCP and SCTP connection
requests in the basic case. The figure shows how the CPU
load varied as a function of the connection request rate and
the size of the requested Web objects. The bar charts show
the median values measured as described in Section 3.1, with
error bars spanning the 10th and 90th percentiles. As fol-
lows, the CPU load of HE was quite substantial in the 1-KiB
tests, roughly 40% higher CPU load than SCTP (i.e., the
transport protocol considered in the study that consumed
the most CPU load, in the tests with request rates 1000, 700,
and 400 requests/s). However, as is evident from the 35-KiB
tests, this was most likely an effect of the small amount of
bytes transmitted in each Web response, and thus the small
amount of bytes over which the CPU load was amortized:
In the 35-KiB tests, the CPU load of HE was less than 10%
higher than that of SCTP in the tests with request rates of
1000, 700, and 400 requests/s.

Figure 3(b) examines the kernel memory usage of HE com-
pared with that of single TCP and SCTP connection re-
quests. The bar charts show the median values with error
bars spanning the 10th and 90th percentiles. Similar to Fig-
ure 3(a), the bar charts illustrate how the kernel memory
varied with increasing connection request rates, and for dif-
ferent sizes of the requested Web object. We observe that
HE had no or negligible impact on the kernel memory con-
sumption – neither in the 1-KiB tests nor in the 35-KiB tests
do we see a significant increase in kernel memory usage. In
fact, the 35-KiB tests indicate that as the connection request
rate increases, HE (at least in those cases where TCP wins)
reduces the kernel memory usage as compared with SCTP.

3.3 Happy Eyeballing in the TLS Test Case
Figure 4 summarises the results from the TLS test case.

Figure 4(a) is similar to Figure 3(a), but compares the CPU
load in the case with TLS-encrypted connections. We ob-
serve that contrary to the basic case, the impact on CPU
load of HE as compared with SCTP decreases significantly
in the 1-KiB tests (less than 13% in all cases) and is not
statistically significant in the 35-KiB tests (less than 4% in

the tests with request rates 1000, 700, and 400). Similar ob-
servations also apply when compared with TCP, where the
impact of HE on CPU load is significantly lower than that
in the basic case. Again, the reason HE had less effect on
CPU load in this scenario compared with the basic case, was
an effect of the way the CPU load was amortized.

Figure 5 illustrates how the CPU was shared among the
kernel (including the FreeBSD subsystem) and the lighttpd
server when the HE mechanism is used in the 35-KiB tests;
both the tests for the basic case, as well as those for the
TLS case. We observe that since the CPU load inflicted by
HE was almost the same in both test cases, the CPU load
of TLS (as reflected in the increase on the user CPU time of
the lighttpd processes) overshadowed that of HE. Thus, in
sum, we draw the conclusion that although HE is done at the
price of some extra CPU load, the price becomes marginal
for larger Web object sizes, and becomes even less significant
in those cases HE is done between encrypted connections.

As regards the kernel memory usage in the TLS case, it
follows from Figure 4(b) that HE had a marginal impact on
this factor in this test case as well: In all tests, the kernel
memory usage of HE is slightly higher than that of TCP
(less than 8% higher memory usage), and always less than
the kernel memory usage of SCTP.

3.4 Happy Eyeballing with Cached Results
In the basic and TLS use cases, we evaluated a naive HE

mechanism that always tried both TCP and SCTP. This
is, however, a rather inefficient implementation of HE. A
more efficient and, as we see it, more realistic implemen-
tation would cache the outcome of previous connection at-
tempts. So, e.g., assume that we have a cache hit rate of
80%, then HE tries both TCP and SCTP in only 20% of
the application connection requests; in the remaining 80%
of the application connection requests, HE issues either a
TCP or SCTP connection request depending on the content
of the HE cache. A cache hit rate of 80% is actually not an
unreasonable figure. In statistics we obtained from Mozilla,
they observed a hit rate of ≈ 84% in the Firefox internal
‘route’ cache during a six-week observation period.

Figure 6 shows the median CPU load (with error bars
spanning the 10th and 90th percentiles) of HE at different

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

127 of 131 Project no. 644334

0

5

10

15

20

25

30

TCP SCTP HE-‐TCP TCP SCTP HE-‐TCP TCP SCTP HE-‐TCP TCP SCTP HE-‐TCP

100 400 700 1000

CP
U
	 u
til
is
at
io
n(
%
)

Average	 request	 rate	 (requests/s)

Requested	 object	 size	 =	 1	 KByte
Requested	 object	 size	 =	 35	 KBytes

(a) CPU utilisation.

0

5

10

15

20

25

30

35

TCP SCTP HE-‐TCP TCP SCTP HE-‐TCP TCP SCTP HE-‐TCP TCP SCTP HE-‐TCP

100 400 700 1000

Ke
rn
el
	 m

em
or
y	
us
ag
e	
(M

By
te
s)

Average	 request	 rate	 (requests/s)

Requested	 object	 size	 =	 1	 KByte

Requested	 object	 size	 =	 35	 KBytes

(b) Kernel memory usage.

Figure 4: The results for the TLS test case.

all#lighttpd#processes#(usr#CPU#time)

0"

5"

10"

15"

20"

25"

30"

35"

40"

45"

no*TLS" TLS" no*TLS" TLS" no*TLS" TLS" no*TLS" TLS"

100" 400" 700" 1000"

M
ea
n"
CP

U
"T
im

e"
(s
ec
on

ds
)"

Average"request"rate"(requests/sec)"

random_harvestq"system"process"
kernel"system"process"
intr"system"process"
all"lighJpd"processes"(sys"CPU"Kme)"
all"lighJpd"processes"(usr"CPU"Kme)"

Figure 5: Breakdown of CPU utilisation for happy
eyeballing between TCP and SCTP. Requested ob-
ject size is 35 KiB.

cache hit ratios between 0% (naive HE that always tries both
TCP and SCTP) and 100% (single TCP flows) in the 1-KiB
tests: Figure 6(a) shows the total CPU load when TLS is not
used, and Figure 6(b) when TLS is used. Figure 7 shows the
corresponding results for the 35-KiB tests. Since the CPU
load increases with increasing connection request rates and
is thus more pronounced at higher request rates, we only
consider the tests with a request rate of 1000 requests/s in
Figures 6 and 7. Still, it should be noted that similar results
were obtained for the lower connection request rates. The
HE tests considered three outcomes: HE always results in a
TCP connection being setup (HE-TCP); HE always results
in an SCTP connection being setup (HE-SCTP); and, HE
results in a TCP connection being setup half the time and
an SCTP connection half the time (HE-50%).

We observe that the CPU load of HE decreases linearly
as the cache hit rate increases, and this decrease is higher,
percentage-wise, when TLS is not used (in the 1-KiB tests
about 43% reduction in the CPU load when the cache hit
rate is 80% and TLS is not used, and 18% reduction for TLS
encrypted connections and the same cache hit rate). Again,

the reason caching had less effect on the decrease of the CPU
load when TLS was used, was the effect of the way the CPU
load was amortised. We further observe in Figure 6 that
irrespective of whether TLS is being used or not, the dif-
ference in the CPU load imposed by HE-TCP, HE-50, and
HE-SCTP is negligible for the 1-KiB tests. This implies that
for small objects the additional cost of the http transaction
is almost the same for both TCP and SCTP. For larger ob-
jects (e.g., 35 KiB), however, this cost is higher when SCTP
is used, and hence significant differences between HE-TCP,
HE-50, and HE-SCTP are observed at low cache hit rates in
Figure 7.

We omit showing how the cache hit ratio influences the
kernel memory consumption, since already the basic and
TLS use cases suggest that kernel memory usage is not much
of an issue for HE. Still, for completeness, we can mention
that the cache hit ratio also had a positive impact on kernel
memory usage. For instance, in the 1 KiB tests the kernel
memory usage of HE at a cache hit rate of 80% was pretty
much the same as for single TCP flows.

4. CONCLUSIONS
The Happy Eyeballs algorithm was originally proposed,

and is currently being deployed, as a way of making a smooth
transition from IPv4 to IPv6. However, the algorithm has
also been proposed as a transport-selection mechanism. This
paper evaluates happy eyeballing between TCP and SCTP,
and shows that although HE increases CPU load as com-
pared with a single TCP or SCTP connection establish-
ment, the increase is in the order of 10% for 35 KiB Web
objects, i.e., fairly typical Web objects, and is even smaller
in those cases the happy eyeballing takes place between TLS-
encrypted connections. Moreover, we show that the caching
of connection-request results substantially reduces the HE
CPU load, especially in comparison with the cost of TLS.
As regards memory usage, our results suggest that HE has
essentially the same memory footprint as single TCP/SCTP
flows. The analysis in this paper shows that integrating a
Happy Eyeballs mechanism into a library which provides a
generic transport service is indeed a viable option to enable
the use of advanced transport-protocol features whenever
they are available. An example of such a library is the neat

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

128 of 131 Project no. 644334

0

1

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1

CP
U
	 u
til
is
at
io
n	
(%

)

Cache	 hit	 rate

HE-‐TCP

HE-‐50%

HE-‐SCTP

(a) Basic scenario.

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

CP
U
	 u
til
is
at
io
n	
(%

)

Cache	 hit	 rate

HE-‐TCP

HE-‐50%

HE-‐SCTP

(b) TLS scenario.

Figure 6: Impact of cache hit ratio on CPU utilisation. Requested object size is 1 KiB with a request rate of
1000 requests/s.

0

1

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1

CP
U
	 u
til
is
at
io
n	
(%

)

Cache	 hit	 rate

HE-‐TCP

HE-‐50%

HE-‐SCTP

(a) Basic scenario.

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

CP
U
	 u
til
is
at
io
n	
(%

)

Cache	 hit	 rate

HE-‐TCP

HE-‐50%

HE-‐SCTP

(b) TLS scenario.

Figure 7: Impact of cache hit ratio on CPU utilisation. Requested object size is 35 KiB with a request rate
of 1000 requests/s.

library currently being developed by the NEAT project2.
Future work includes evaluating the performance of HE

when there are more than two transport solutions to be
tried, e.g., TLS or DTLS encrypted traffic using IPv4 or
IPv6 as the network layer, and TCP, native SCTP, or UDP-
encapsulated SCTP as the transport layer, giving a total of
six protocol candidates. Already, we note that the use of
caching becomes even more important in these cases. Fu-
ture work would also consider real-world experiments, where
middlebox interference can be taken into account, as well as
additional metrics to further examine the effects of trans-
port happy eyeballing on both the network and destination
end hosts, such as resource consumption on middleboxes,
network load, and transaction times.

5. ACKNOWLEDGMENTS
The authors would like to thank Patrick McManus (Mozilla)

for providing the Firefox cache-hit statistics.

2https://github.com/NEAT-project/neat

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No. 644334 (NEAT). The views expressed are
solely those of the authors.

6. REFERENCES
[1] E. Aben. Hampering Eyeballs – Observations on Two

“Happy Eyeballs” Implementations. RIPE NCC, Nov.
2011. https://labs.ripe.net/Members/emileaben/
hampered-eyeballs.

[2] V. Bajpai and J. Schoenwaelder. Measuring the effects
of happy eyeballs. Internet Draft draft-bajpai-happy,
work in progress, July 2013.
https://tools.ietf.org/html/draft-bajpai-happy.

[3] F. Baker. Testing Eyeball Happiness. RFC 6556
(Informational), Apr. 2012.

[4] O. Bonaventure. Happy eyeballs makes me unhappy...,
Dec. 2013. http://perso.uclouvain.be/olivier.
bonaventure/blog/html/2013/12/03/happy.html.

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

129 of 131 Project no. 644334

[5] S. Gueron. Intel R© Advanced Encryption Standard
(AES) New Instructions Set. Intel Corporation, 2012.

[6] httperf. The httperf page on SourceForge.
https://sourceforge.net/projects/httperf.

[7] G. Huston. Bemused Eyeballs: Tailoring Dual Stack
Applications for a CGN Environment. The ISP
Column, May 2012. http:
//www.potaroo.net/ispcol/2012-05/notquite.html.

[8] IETF. Transport Services (taps) Working Group.
https://datatracker.ietf.org/wg/taps/charter/.

[9] Lighttpd. Lighttpd – fly light.
https://www.lighttpd.net.

[10] D. Schinazi. Apple and IPv6 — Happy Eyeballs.
Email to the IETF v6ops mailing list, July 2015.
https://www.ietf.org/mail-archive/web/v6ops/

current/msg22455.html.

[11] D. Wing and A. Yourtchenko. Happy Eyeballs:

Trending Towards Success (IPv6 and SCTP). Internet
Draft draft-wing-tsvwg-happy-eyeballs-sctp-02, work in
progress, Oct. 2010. https://tools.ietf.org/html/
draft-wing-tsvwg-happy-eyeballs-sctp-02.

[12] D. Wing and A. Yourtchenko. Improving User
Experience with IPv6 and SCTP. The Internet Protocol
Journal, 13(3), Sept. 2010. http://www.cisco.com/c/
en/us/about/press/internet-protocol-journal/

back-issues/table-contents-49/133-he.html.

[13] D. Wing and A. Yourtchenko. Happy Eyeballs:
Success with Dual-Stack Hosts. RFC 6555 (Proposed
Standard), Apr. 2012.

[14] D. Wing, A. Yourtchenko, and P. Natarajan. Happy
eyeballs: Trending towards success (IPv6 and SCTP).
Internet Draft draft-wing-http-new-tech, work in
progress, Aug. 2010. https://tools.ietf.org/html/
draft-wing-http-new-tech-01.

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

130 of 131 Project no. 644334

D2.3
Final Version of Core Transport System

Public
Rev. 1.0/ August 31, 2017

Disclaimer

The views expressed in this document are solely those of the author(s). The European Com-

mission is not responsible for any use that may be made of the information it contains.

All information in this document is provided “as is”, and no guarantee or warranty is given

that the information is fit for any particular purpose. The user thereof uses the information

at its sole risk and liability.

131 of 131 Project no. 644334

	List of Abbreviations
	Introduction
	Overview of the NEAT Architecture
	Overview of the services provided by the NEAT User API
	Overview of the components required to provide the services
	Overview of component interaction during connection setup
	Overview of connection tear down

	Coding with the NEAT User API
	NEAT User API Tutorial
	What is NEAT?
	Contexts and Flows
	Properties
	Asynchronous API
	A minimal server
	A minimal client
	Tying the client and server together

	Summary of the benefits of coding with the NEAT User API
	Python bindings for the NEAT User API
	Motivation for NEAT Python bindings
	Using SWIG as solution approach
	Challenges and result: NEAT communication between C and Python
	Summary

	Core Transport Functions
	NEAT Framework Components
	NEAT Flow Endpoint
	NEAT API Framework (callback)
	NEAT Logic
	Connect to a name
	NEAT Flow Endpoint Statistics

	NEAT Transport Components
	NEAT-integrated SCTP user-space stack
	Middlebox Traversal
	Local flow priority
	Security

	NEAT Selection Components
	Happy Eyeballs
	Happy Apps (application-level feedback mechanisms)

	NEAT Policy Components
	NEAT Policy Manager
	Policy Information Base (PIB)
	Characteristics Information Base (CIB)

	NEAT reference material
	NEAT tutorial
	Additional online documentation
	Virtual machines

	Conclusions
	References
	NEAT Terminology
	NEAT API Reference
	Optional arguments
	Specifying no optional arguments
	Optional argument macros
	Optional argument tags

	Properties
	Application property reference
	Inferred properties

	Callbacks
	Example callback flow
	Callback reference

	Error codes
	API functions
	neat_init_ctx
	neat_free_ctx
	neat_new_flow
	neat_set_property
	neat_get_property
	neat_open
	neat_accept
	neat_read
	neat_write
	neat_shutdown
	neat_close
	neat_abort
	neat_set_operations
	neat_change_timeout
	neat_set_primary_dest
	neat_secure_identity
	neat_set_checksum_coverage
	neat_set_qos
	neat_set_ecn
	neat_start_event_loop
	neat_stop_event_loop
	neat_get_backend_fd
	neat_get_backend_timeout
	neat_get_event_loop
	neat_get_stats
	neat_getlpaddrs
	neat_log_level
	neat_log_file

	Main changes with respect to Deliverable D2.2
	Paper: NEAT: A Platform- and Protocol-Independent Internet Transport API
	Paper: On the Cost of Using Happy Eyeballs for Transport Protocol Selection

