
NEAT
A New, Evolutive API and Transport-Layer Architecture for the Internet

H2020-ICT-05-2014
Project number: 644334

Deliverable D1.3
Final Version of Services and APIs

Editor(s): Michael Welzl
Contributor(s): Dragana Damjanovic, Gorry Fairhurst, David Hayes, Tom Jones, David Ros,

Michael Tüxen, Felix Weinrank

Work Package: 1 / Use Cases, System Architecture and APIs
Revision: 1.0
Date: October 30, 2017
Deliverable type: R (Report)
Dissemination level: Public

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

Abstract

This document presents the final version of transport services that the NEAT User API pro-

vides to applications. This API reflects the extended functionality that NEAT currently of-

fers. The API also provides primitives to interface to the NEAT Policy Manager; policies can

be adjusted to match the API behaviour to the properties required by an application using

the NEAT User API. The final API has evolved in concert with documents and feedback in

the IETF TAPS Working Group.

The abstract API described here is based on the final analysis and design work done in

Work Package 1 of the NEAT Project. This fulfils the requirements of the NEAT use cases,

outlined in Deliverable D1.1. The API has evolved and been streamlined following imple-

mentation experience from WP2. Some original primitives and events identified in Deliv-

erable D1.2 have been changed or removed; most importantly perhaps, it was determined

to be more suitable to implement some functions in the form of a policy rather than as a

function call. This document updates D1.2 and it supersedes the API that was presented in

that deliverable.

Participant organisation name Short name

Simula Research Laboratory AS (Coordinator) SRL

Celerway Communication AS Celerway

EMC Information Systems International EMC

MZ Denmark APS Mozilla

Karlstads Universitet KaU

Fachhochschule Münster FHM

The University Court of the University of Aberdeen UoA

Universitetet i Oslo UiO

Cisco Systems France SARL Cisco

2 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

Contents

List of Abbreviations 4

1 Introduction 8

2 The NEAT User API 10

2.1 Overview . 10

2.1.1 Notation and presentation style . 11

2.2 API Primitives and Events . 11

2.2.1 NEAT Flow Initialisation . 13

2.2.2 NEAT Flow Establishment . 15

2.2.3 NEAT Flow Availability . 16

2.2.4 NEAT Flow Maintenance . 17

2.2.5 NEAT Flow Termination . 19

2.2.6 Writing and reading data . 21

3 Conclusion 22

References 24

A NEAT Terminology 25

B Reasons for changes from D1.2 28

C Examples of Policy 30

C.1 JSON format . 30

C.2 Profiles . 31

C.3 Examples . 31

C.3.1 Default Policy Profile . 31

C.3.2 Example of Transport Selection Properties . 32

C.3.3 Multihoming Transport Protocol . 33

D Internet-draft: A Minimal Set of Transport Services for TAPS Systems 35

3 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

List of abbreviations

AAA Authentication, Authorisation and Accounting

AAAA Authentication, Authorisation, Accounting and Auditing

API Application Programming Interface

BE Best Effort

BLEST Blocking Estimation-based MPTCP

CC Congestion Control

CCC Coupled Congestion Controller

CDG CAIA Delay Gradient

CIB Characteristics Information Base

CM Congestion Manager

DA-LBE Deadline Aware Less than Best Effort

DAPS Delay-Aware Packet Scheduling

DCCP Datagram Congestion Control Protocol

DNS Domain Name System

DNSSEC Domain Name System Security Extensions

DPI Deep Packet Inspection

DSCP Differentiated Services Code Point

DTLS Datagram Transport Layer Security

ECMP Equal Cost Multi-Path

EFCM Ensemble Flow Congestion Manager

ECN Explicit Congestion Notification

ENUM Electronic Telephone Number Mapping

E-TCP Ensemble-TCP

FEC Forward Error Correction

FLOWER Fuzzy Lower than Best Effort

FSE Flow State Exchange

FSN Fragments Sequence Number

GUE Generic UDP Encapsulation

H1 HTTP/1

4 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

H2 HTTP/2

HE Happy Eyeballs

HoLB Head of Line Blocking

HTTP HyperText Transfer Protocol

IAB Internet Architecture Board

ICE Internet Connectivity Establishment

ICMP Internet Control Message Protocol

IETF Internet Engineering Task Force

IF Interface

IGD-PCP Internet Gateway Device – Port Control Protocol

IoT Internet of Things

IP Internet Protocol

IRTF Internet Research Task Force

IW Initial Window

IW10 Initial Window of 10 segments

JSON JavaScript Object Notation

KPI Kernel Programming Interface

LAG Link Aggregation

LAN Local Area Network

LBE Less than Best Effort

LEDBAT Low Extra Delay Background Transport

LRF Lowest RTT First

MBC Model Based Control

MID Message Identifier

MIF Multiple Interfaces

MPTCP Multipath Transmission Control Protocol

MPT-BM Multipath Transport-Bufferbloat Mitigation

MTU Maximum Transmission Unit

NAT Network Address (and Port) Translation

NEAT New, Evolutive API and Transport-Layer Architecture

5 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

NIC Network Interface Card

NUM Network Utility Maximization

OF OpenFlow

OS Operating System

OTIAS Out-of-order Transmission for In-order Arrival Scheduling

OVSDB Open vSwitch Database

PCP Port Control Protocol

PDU Protocol Data Unit

PHB Per-Hop Behaviour

PI Policy Interface

PIB Policy Information Base

PID Proportional-Integral-Differential

PLUS Path Layer UDP Substrate

PM Policy Manager

PMTU Path MTU

POSIX Portable Operating System Interface

PPID Payload Protocol Identifier

PRR Proportional Rate Reduction

PvD Provisioning Domain

QoS Quality of Service

QUIC Quick UDP Internet Connections

RACK Recent Acknowledgement

RFC Request for Comments

RSerPool Reliable Server Pooling

RTT Round Trip Time

RTP Real-time Protocol

RTSP Real-time Streaming Protocol

SCTP Stream Control Transmission Protocol

SCTP-CMT Stream Control Transmission Protocol – Concurrent Multipath Transport

SCTP-PF Stream Control Transmission Protocol – Potentially Failed

6 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

SCTP-PR Stream Control Transmission Protocol – Partial Reliability

SDN Software-Defined Networking

SDT Secure Datagram Transport

SIMD Single Instruction Multiple Data

SPUD Session Protocol for User Datagrams

SRTT Smoothed RTT

STTF Shortest Transfer Time First

SDP Session Description Protocol

SIP Session Initiation Protocol

SLA Service Level Agreement

SPUD Session Protocol for User Datagrams

STUN Simple Traversal of UDP through NATs

TCB Transmission Control Block

TCP Transmission Control Protocol

TCPINC TCP Increased Security

TLS Transport Layer Security

TSN Transmission Sequence Number

TTL Time to Live

TURN Traversal Using Relays around NAT

UDP User Datagram Protocol

UPnP Universal Plug and Play

URI Uniform Resource Identifier

VoIP Voice over IP

VM Virtual Machine

VPN Virtual Private Network

WAN Wide Area Network

WWAN Wireless Wide Area Network

7 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

TCP UDP SCTP

APP Class 0 APP Class 1 APP Class 2 APP Class 3

TCP Minion Experimental
Mechanisms

Traditional Socket NEAT Socket

Middleware

NEAT Framework

NEAT User API

NEAT APP Support
API

NEAT
Policy

ManagerUSER

KERNEL

Policy
Information

Base

Characteristic
Information

Base

Policy Interface

SCTP/UDP

APP Class 4

PCAP RAW IP Experimental
Mechanisms

KPI

Selection
Components

H and S
Components

NEAT APP Support
Module

IP

DIAG &
STATS

NEAT Kernel
Module

Policy Interface

Transport
Components

SCTP/
UDP

SPUD/
UDP…

Userspace Transport
Exp

Mech

Figure 1: Components and interfaces to the NEAT System, as described in Deliverable D1.1. The NEAT
User Module is composed of all the blocks shown in light blue (NEAT Framework, NEAT Transport,
NEAT Selection, NEAT Signalling and Handover, and Policy Components) and related APIs (NEAT User
API, Policy Interface, Diagnostics and Statistics Interface).

1 Introduction

The NEAT Project has defined a new architecture, presented in Deliverable D1.1 [5] and outlined in

Figures 1 and 2, that changes the transport layer interface exposed to Internet applications. By pre-

senting a new API that allows applications to provide information that describes properties of the

required service, a NEAT System enables the stack to automatically choose an appropriate protocol.

This seemingly simple change can have massive ramifications, because it allows flexible usage of a

range of protocol components underneath the new user interface. This can enable the best possible

use of the protocols/services that are available end-to-end along a given network path or paths.

This document summarises the final work done in WP1. It provides the conclusion of the architec-

tural analysis in WP1, presenting the final specification of transport services and the final abstract Ap-

plication Programming Interface (API) for the NEAT System. In the following paragraphs, we describe

how this document has evolved from the initial NEAT User API presented in Deliverable D1.2 [12].

The work includes refinements to the architecture and the abstract API, updating the information

in D1.2. This original work was guided by the NEAT use cases [5] to realise an API design process

based on the IETF TAPS Working Group documents. The focus of the present document is to provide

an integrated view of the services and API that can be read together with the final version of the Core

transport system in Deliverable D2.3 [7].

The current document follows implementation experience after completing the validation and

performance analysis (milestone MS7)—for example, this includes understanding the implications

of policy decisions, and experience in integrating NEAT Selection mechanisms.

The number of API primitives and events covered has grown since D1.2, which was in turn largely

8 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

Traditional Socket NEAT Socket

NEAT User API

USER

KERNEL KPI

NEAT
Framework

Components

NEAT
Selection

Components
NEAT Policy
Components

NEAT
Transport

Components

NEAT Signalling
and Handover
Components

Di
ag

no
st

ic
s

an
d

St
at

is
tic

s

Policy Interface

Figure 2: The groups of components and external interfaces used to realise the NEAT User Module, as
described in Deliverable D1.1. The NEAT User Module utilises the lower interface provided by a Kernel
Programming Interface (KPI), the traditional Socket API or an optional NEAT Socket API. The focus of
the present document is on the NEAT User API providing transport services to applications.

based on an earlier version of the TAPS “usage” Internet draft [11], authored by NEAT participants. The

present deliverable reflects the many changes as this Internet draft moved towards Internet Consensus

and eventual publication as an RFC1. It also benefits from the insights from a companion Internet draft

describing UDP and UDP-Lite [4], also authored by NEAT participants.

The resulting API is therefore not strictly a superset of the original version in D1.2. The reasons for

this are quite diverse, and are explained in detail in Appendix B.

While the Internet drafts cited before were used as input to the present document, there were at

least two good reasons not to try to incorporate the whole content of these drafts into the NEAT User

API. From the analysis in [10], these reasons are as follows:

1. Primitives and events that relate to functionality that could under some circumstances be auto-

matically provided underneath the application are not always good to expose, as the application

using them then limits the flexibility of the underlying system.

2. Some primitives and events that cannot be replaced with similar functionality from TCP or UDP

should not be offered, as they prevent the system from falling back to TCP or UDP. SCTP’s “pay-

load protocol-id” is such a function: it is essentially a number that can be transferred out-of-

band, “aside” (but logically connected to) an association. TCP cannot do that; hence, if an ap-

plication explicitly relies on this functionality, it cannot be made to run over TCP if SCTP is not

available.

A Minimal Set of Transport Services for IETF TAPS Systems has been produced as a result of work

in NEAT, and is documented in a TAPS Internet Draft [10], included in Appendix D. If one was to im-

plement an API using the reasons above as design principles, one would arrive at an API resembling

such “minimal set”. The NEAT User API as described here implements this minimal set of transport

services, but extends this beyond the constraints set by the IETF TAPS working group Charter2. No-

tably, both the NEAT System and the “minimum set” are designed to work one-sided, i.e., a NEAT host

can most efficiently talk to another NEAT host, but it can also talk to a NEAT-unaware host via TCP or

UDP. Such one-sided deployment greatly facilitates the gradual introduction of the NEAT System into

the Internet.

The minimal set in [10] removes multi-streaming from the API altogether, as the decision to use

multi-streaming does not require application-specific knowledge (and then, the transport system un-

1At the time of writing, an RFC number was not available yet; the status of the draft was: Submitted to IESG for Publication.
2https://tools.ietf.org/wg/taps/charters

9 of 89 Project no. 644334

https://tools.ietf.org/wg/taps/charters

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

derneath can decide to automatically map application flows onto transport streams). NEAT does im-

plement this functionality; however, in NEAT, streams can also be used directly by the application

programmer. This can allow a NEAT application to communicate with a non-NEAT enabled SCTP

application.

In some cases, an API primitive or event planned in D1.2 was found to provide functionality that

the consortium believed to be better implemented by other means (e.g., specifying the send buffer

size vs. using the “low watermark” functionality described in [10]). In other cases, some functionalities

were found to be better expressed as system policies. In some other cases, after further analysis the

functionality was simply found not to be needed for the industry use cases.

The remainder of the document is structured as follows. Section 2 describes the NEAT User API,

defining the set of primitives and events that compose this API. The main body of the document con-

cludes in Section 3. Common NEAT-specific terms are defined in Appendix A. The rationale for the

main changes in the API from D1.2 to D1.3 is presented in detail in Appendix B. Appendix C provides a

set of examples of policies and how they are used in NEAT. Finally, Appendix D includes a copy of the

“Minimal Set” Internet draft at the time of writing, for reference.

2 The NEAT User API

Note: The description of the NEAT User API presented in this section replaces that in Deliverable

D1.2, reflecting the status at the end of Work Package 1 activities.

2.1 Overview

The NEAT architecture defines a callback-based design realised as events provided by the NEAT User

API. The implementation details of these functions are reviewed in D2.3 [7], together with examples

of use with real code. In contrast, this document focusses solely on the abstract NEAT User API.

Possible events and primitives related to NEAT flows are described in § 2.2. This covers the commu-

nication functionality of the NEAT System. Following the common style in IETF RFCs, these primitives

and events are described in an abstract fashion, i.e., the description is not bound to a specific program-

ming language. The semantics associated with the API primitives and events are fully described here;

however, the NEAT implementation, as embodied by the C-language prototype presented in D2.3 [7],

may differ in syntax from this API.

The NEAT primitives and events can be categorised according to the following taxonomy, based on

whether a call pertains to a NEAT flow per se or to the data carried by such NEAT flow:

• Manipulating a NEAT flow:

– Initialisation (§ 2.2.1).

– Establishment (§ 2.2.2).

– Availability (§ 2.2.3).

– Maintenance (§ 2.2.4).

– Termination (§ 2.2.5).

• Manipulating data:

10 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

– Writing and reading data (§ 2.2.6).

An application using the NEAT System must take the following steps to utilise the network (see

also § 2):

1. Initialisation: a) create a NEAT flow by calling P: INIT_FLOW; then b) call P: SET_PROPERTIES to

express the application’s requirements. This is used by NEAT’s Policy Manager and is necessary

to avoid unwanted outcomes, e.g., to avoid a choice of UDP for an application that requires

reliability, or the use of TCP for an application that prefers unordered delivery (these cases are

explained in greater detail in Appendix D).

2. Establishment / Availability: Connect (actively or passively) the NEAT flow.

3. Use the flow to transfer data; call maintenance API primitives as needed to configure the flow.

4. Termination: Close (or abort) the NEAT flow.

An example of an application interacting with NEAT is shown in Figure 3.

Table 1 lists all the primitives and events that constitute the NEAT User API. The Category column

refers to the taxonomy introduced above. The last column points to the relevant section of this docu-

ment where each component of the API is described in detail.

A NEAT Flow has a set of properties which are set at flow initialisation time, and it has attributes

which can be read by an application once a flow has been initialised (see Table 2). Properties are re-

lated to Transport Features. For instance, the link-layer security, transport-layer security, certificate

verification, certificate and key properties set at initialisation time (§ 2.2.1) are related to a Confiden-

tiality Transport Feature.

2.1.1 Notation and presentation style

We describe next the notation and presentation style used in the remainder of the document.

Each primitive/event is associated with a particular NEAT flow, and the primitives and events for

manipulating data can only be used after a NEAT flow has been created. However, for simplicity, the

flow parameters are not shown.

The names of primitives and events are shown in small caps: LIKE THIS. P: and E: respectively

indicate primitives and events. Their parameters are shown in italics with optional parameters shown

in square brackets: [like this]. A triangle (B) indicates the explanation of a primitive or event.

2.2 API Primitives and Events

The Transport Features offered by the NEAT User API are described as follows:

• Transport Features that require immediate action (or feedback) from NEAT are presented as

primitives.

• Transport Features that require immediate action from the application are presented as events.

• Transport Features that require adjusting properties before a NEAT Flow is opened are presented

in the Initialisation category.

11 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

Initialisation
(§ 2.2.1)

Establishment
(§ 2.2.2)

Maintenance
(§ 2.2.4)

Writing and
reading data

(§ 2.2.6)

Termination
(§ 2.2.5)

Application NEAT

INIT_FLOW

SET_PROPERTIES

OPEN
Event loop starts

Policy Manager
Reduces candidates

Start candidate 1

Start candidate 2

Start candidate 3

Connect 1

Connect 3

Happy
Eyeballs

e: on_connected

GET_PROPERTY

property

WRITABLE

WRITE

NEAT Security Layer
Write

packet sent

packet arrives

NEAT Security Layer
Read

e: on_readable

READ

data

CLOSE

e: on_close
Event loop stops

Figure 3: Message Sequence Chart (MSC) illustrating an application making a NEAT-based connec-
tion. Messages in blue are specific to our callback based implementation and not part of the more
general abstract API described in this document.

For many API primitives and events, syntactical decisions regarding the way they are presented

here were guided by the way they have been presented in the related TAPS documents [4, 11] (which,

12 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

Table 1: NEAT User API Primitives and Events.

Type Category Name Section

Primitives

NEAT Flow Initialisation
INIT_FLOW

2.2.1
SET_PROPERTIES

NEAT Flow Establishment
OPEN

2.2.2
OPEN_WITH_EARLY_DATA

NEAT Flow Availability ACCEPT 2.2.3

NEAT Flow Maintenance

CHANGE_TIMEOUT

2.2.4

SET_PRIMARY

SET_LOW_WATERMARK

SET_MIN_CHECKSUM_COVERAGE

SET_CHECKSUM_COVERAGE

SET_TTL

GET_PROPERTY

NEAT Flow Termination
CLOSE

2.2.5
ABORT

Writing and reading data
WRITE

2.2.6
READ

Events

NEAT Flow Maintenance NETWORK_STATUS_CHANGE 2.2.4

NEAT Flow Termination
CLOSE

2.2.5ABORT

TIMEOUT

Writing and reading data WRITABLE 2.2.6

in turn, depend on IETF RFCs), as well as the system dynamics underlying the respective Transport

Features that the API offers. This only defines a method to present an abstract API; it does not limit

the NEAT implementation itself, and different implementations of the same abstract API are possible.

The NEAT Library implemented in WP2 takes a particular approach — i.e., using the Policy Manager

to achieve greater flexibility in use. Other implementations could choose to implement primitives to

communicate each property/parameter separately and directly across the API.

2.2.1 NEAT Flow Initialisation

The primitives below are called before the flow is opened.

P: INIT_FLOW()

B This primitive must be called before calling P: OPEN (§ 2.2.2), P: OPEN_WITH_EARLY_DATA

(§ 2.2.2) or P: ACCEPT (§ 2.2.3), and will return an error otherwise.

P: SET_PROPERTIES(propertyList)

propertyList : a JSON String describing the properties of the flow.

B This primitive can be called after P: INIT_FLOW to express the application’s requirements.

13 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

Table 2: Examples of Properties and Attributes related to a NEAT Flow. These are controlled and ac-
cessed via different API calls, invoked at different times in a NEAT Flow’s lifetime, as indicated by the
Category column.

Category Name Section

NEAT Flow Initialisation

Link-layer security

2.2.1

Capacity profile
Transport-layer security
Peer certificate verification
Security certificate
Public key
NEAT Flow disable handover
NEAT ECN Enable
NEAT Flow metadata
NEAT Flow group
NEAT Flow priority
DSCP value

NEAT Flow Maintenance
Read-only flow
attributes

NEAT transport parameters

2.2.4
Interface statistics
Path statistics
Used DSCP

The (abstract) properties that can be set with this call include:

• Link-layer security: Boolean that, if true, requests selection of a local interface that provides

some form of link layer security (e.g., to avoid open WiFi networks). Default: false.

• Capacity profile: One out of four values defining what kind of dynamic behaviour the NEAT Flow

should have: 1) LBE (e.g., LEDBAT [9] congestion control), 2) conservative (e.g., CAIA Delay Gra-

dient congestion control [6]), 3) normal (e.g., TCP-friendly “Reno-like” [1] congestion control),

4) aggressive (e.g., CUBIC [8] congestion control). This is purely advisory, if one of these ca-

pacity profiles is requested but is not available, or if this property is not set, the system’s default

behaviour will be used (e.g., 3 for FreeBSD, 4 for Linux).

• Transport-layer security: If this boolean property is included, it specifies a preference for using

a secure connection. If true, this means: must use a secure connection, whereas false means: try

to use a secure connection. Default: false.

• Peer certificate verification: If this boolean property is used, it specifies a preference for the

validation of the peer certificate. A value of true means: must validate, while a value of false

means: it will not be validated. Default: true.

• Security certificate: This property specifies a file that contains a certificate that is to be used. If

this is not specified, no certificate will be used.

• Public key: This property specifies a file that contains a public key to be used. If neither this

property nor Security certificate are specified, no private key is used. If Public key is not speci-

fied but Security certificate is, the private key will be taken from Security certificate.

14 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

• NEAT Flow disable handover: This boolean property allows to disable the “seamless handover”

functionality of NEAT. This can be useful for applications that implement their own handover

functionality, to avoid function duplication. Default: false.

• NEAT ECN Enable: This boolean property indicates a NEAT Flow can initiate use of Explicit Con-

gestion Notification (ECN). Default: true.

• NEAT Flow metadata: Information about the flow such as the type and name of the application,

the length of the flow in bytes, the expected duration, etc. Default: no information.

• NEAT Flow group: This integer number identifies groups of flows—all flows having the same

number and the same destination belong to a common group. Flows in one group should obtain

common congestion management, allowing a chosen NEAT Flow priority (see below) to play

out between these flows, e.g., because it is believed that they share the same network bottleneck.

The default value is 0.

• NEAT Flow priority: This defines a priority value P for the NEAT Flow. The word “priority” here

relates to a desired share of the capacity such that an ideal NEAT implementation would assign

the NEAT Flow the capacity share P×C/sum_P, where P = priority, C = total available capacity

and sum_P = sum of all priority values that are used for the NEAT Flows in the same NEAT Flow

group. The implementation of per-flow priorities is local, meaning that it may yield unexpected

behaviour when it interferes with prioritisation inside the network (e.g., when additionally set-

ting a DSCP value). The priority setting is purely advisory; no guarantees are given. Default: 1.

• DSCP value: The (abstract) DSCP value that the application desires to use for all sent messages

of the NEAT Flow. No guarantees are given regarding the actual usage of the DSCP value on

packets. Adjusting this property is expected to mostly be useful for datagram services. Care

should be taken when adjusting this value, in particular when changing it on an already active

flow as this can impact ordering and congestion control [2]. Default: 0.

2.2.2 NEAT Flow Establishment

The two primitives below allow the creation of a NEAT Flow from one transport endpoint to one or

more transport endpoints.

P: OPEN(destname port [stream_count])

destname : a NEAT-conformant name (which can be a DNS name or a set of IP addresses) to

connect to.

port : port number (integer) or service name (string) to connect to.

stream_count : the number of requested streams to open (integer). Note that, if this pa-

rameter is not used, NEAT may still use multi-streaming underneath, e.g., by automatically

mapping NEAT Flows between the same hosts onto streams of an SCTP association. Using

this parameter disables such automatic functionality.

Returns: success or failure. If success, it also returns a handle for a NEAT Flow.

B This primitive opens a flow—actively for transports that require a connection handshake

(e.g., TCP, SCTP), and passively for transports that do not (e.g., UDP, UDP-Lite). Note that call-

ing P: OPEN alone may not actually have an effect “on the wire”, i.e., a P: ACCEPT at the peer

15 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

may not be triggered by it. Since it is possible that the peer’s P: ACCEPT only returns when data

arrives, this may only happen after the local host has called P: WRITE (NEAT’s actual callback-

based implementation does not have this problem because its P: ACCEPT does not block any-

way).

P: OPEN_WITH_EARLY_DATA(destname port [stream_count] [flow_group] [stream] [pr_method pr_value]

[unordered_flag] data datalen)

destname : defined in the same way as in P: OPEN.

port : defined in the same way as in P: OPEN.

stream_count : defined in the same way as in P: OPEN.

flow_group : defined in the same way as in P: OPEN.

stream : the number of the stream to be used. At the moment this function is called, a con-

nection is still not initialised and the protocol may not be known. If the protocol chosen by

the NEAT Selection components supports only one stream, this parameter will be ignored.

pr_method and pr_value : if these parameters are used, then partial reliability is enabled

and pr_method must have an integer value from 1 to 2 to specify which method to imple-

ment partial reliability is requested. Value 1 means: pr_value specifies a time in milliseconds

after which it is unnecessary to send this data block. Value 2 means: pr_value specifies a re-

quested maximum number of attempts to retransmit the data block. If the selected NEAT

transport does not support partial reliability these parameters will be ignored. See P: WRITE

in § 2.2.6 for more information.

unordered_flag : The data block may be delivered out-of-order if this boolean flag is set.

Default: false. If the protocol chosen by the NEAT Selection components does not support

unordered delivery, this parameter will be ignored.

data : data to be sent.

datalen : the amount (positive integer) of data supplied in data.

Returns: success or failure. If success, it also returns a handle for a NEAT Flow and the

amount of supplied data that was buffered.

B To accommodate TLS 1.3 early data and the TCP Fast Open option, application data need

to be supplied at the time of opening a NEAT Flow. This primitive opens a flow and sends

early data if the protocol supports it. If the protocol chosen does not support early application

data, data will be buffered then sent after connection establishment, similar to calling P: WRITE.

For this reason, in addition to the parameters of P: OPEN, this primitive also needs the same

parameters as P: WRITE. Note that the supplied data can be delivered multiple times (replayed);

an application must take this into account when using this function — this is commonly known

as idempotence.

2.2.3 NEAT Flow Availability

The primitive below is used to receive incoming communication requests.

P: ACCEPT([name] port [stream_count])

16 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

name : local NEAT-conformant name (which can be a DNS name or a set of IP addresses) to

constrain acceptance of incoming requests to local address(es). If this is missing, requests

may arrive at any local address.

port : local port number (integer) or service name (string), to constrain acceptance to in-

coming requests at this port.

stream_count : the number of requested streams to open (integer). Default value: 1.

Returns: one or more destination IP addresses, information about which destination IP

address is used by default, inbound stream count (= the outbound stream count that was

requested on the other side), and outbound stream count (= maximum number of allowed

outbound streams).

B This primitive prepares a flow to accept communication from another NEAT endpoint. UDP

and UDP-Lite do not natively support a POSIX-style accept mechanism; in this case, NEAT em-

ulates this functionality. Note that P: ACCEPT may only return once data arrives, not necessarily

after the peer has called P: OPEN (NEAT’s actual callback-based implementation does not have

this problem because its P: ACCEPT does not block anyway).

2.2.4 NEAT Flow Maintenance

Primitives and Events The primitives and events below are out-of-band calls that can be issued at

any time after a NEAT Flow has been opened and before it has been terminated.

P: CHANGE_TIMEOUT(toval)

toval : the timeout value in seconds.

B This primitive adjusts the time after which a NEAT Flow will terminate if data could not be

delivered. If this primitive is not called, NEAT will make an automatic default choice for the

timeout.

P: SET_PRIMARY(dst_IP_address)

dst_IP_address : the destination IP address that should be used as the primary address.

B This primitive is meant to be used on NEAT Flows having multiple destination IP addresses,

with protocols that do not use load sharing. It should not have an effect otherwise. Note that, in

case a contradictory parameter is used when writing data, it will overrule this general per-flow

setting. If this primitive is not called, the NEAT System will make an automatic default choice

for the destination IP address.

P: SET_LOW_WATERMARK(watermark)

watermark : upper limit of unsent data in the socket buffer, in bytes.

B This primitive allows the application to limit the amount of unsent data in the underlying

socket buffer. If set, NEAT will only execute E: WRITABLE (§ 2.2.6) when the amount of unsent

data falls below the watermark. This allows applications to reduce the sender-side queuing

delay.

17 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

P: SET_MIN_CHECKSUM_COVERAGE(length)

length : The number of bytes that must be covered by the checksum for the datagram to be

delivered to the application.

BThis primitive allows an application to set the minimum acceptable checksum coverage length

for a received UDP-Lite datagram. A receiver that receives a UDP-Lite datagram with a smaller

coverage length will not hand over the data to the receiving application. This is ignored for

other protocols, where all data are fully covered by the checksum.

P: SET_CHECKSUM_COVERAGE(length)

length : sets the number of bytes covered by the checksum on outgoing UDP-Lite datagrams.

This is ignored for other protocols, where all data are fully covered by the checksum.

B This primitive allows an application to set the number of bytes covered by the checksum in a

UDP-Lite datagram.

P: SET_TTL(ttl)

ttl : sets the minimum TTL or Hop Count on a datagram before it will be passed to the

application.

E: NETWORK_STATUS_CHANGE()

Returns: status code.

B This event informs the application that something has happened in the network; it is safe to

ignore without harm by many applications. The status code indicates what has happened in

accordance with a table that includes at least the following three values: 1) ICMP error message

arrived; 2) Excessive retransmissions; 3) one or more destination IP addresses have become

available/unavailable.

P: GET_PROPERTY(property)

property : string with the property name.

Returns: value set to the property by the Policy Manager.

B Allows an application to discover the value assigned to a property by the Policy Manager.

Flow maintenance properties The P: GET_PROPERTY primitive allows to obtain flow maintenance

properties, expressed as part of policies and handled by NEAT’s Policy Manager. These are properties

that either can be adjusted after flow initialisation (§ 2.2.1), or they are attributes of a flow that can

only be read by an application once a flow has been initialised (read-only). These are:

• NEAT transport parameters: Parameters used (e.g., congestion control mechanism, TCP sysctl

parameters, . . .). For example, the choice of congestion control mechanism is likely to depend on

the Capacity profile property (§ 2.2.1) if that property is specified — but such property does not

indicate a concrete congestion control algorithm, which this readable attribute returns. More

generally, this attribute gives the application a more concrete view of the choices made by the

NEAT System.

18 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

NEAT Logic

NEAT User API

P: SET_PROPERTIES(…, DSCP value, …)P: GET_PROPERTY(Used DSCP)

NE
AT

 P
ol

icy
 In

te
rfa

ce

Po
lic

y
M

an
ag

er

NEAT Flow Endpoint

Figure 4: Example of setting and reading flow properties and attributes, respectively, and interaction
with NEAT’s Policy Manager.

• Interface statistics: Interface MTU, addresses, connection type (link layer), etc.

• Path statistics: Experienced RTT, packet loss (rate), jitter, throughput, path MTU, etc.

• Used DSCP: The DSCP assigned to a NEAT Flow. This may differ from the requested DSCP when

the QoS has been mapped by the policy system.

Figure 4 provides an example of the relation between the NEAT User API, properties/attributes

and the Policy Manager. Suppose the application wants to specify an abstract QoS marking to be

used in all of its packets. The application passes this value to NEAT as a DSCP value property, via P:

SET_PROPERTIES. The code implementing the NEAT User API (labeled as “NEAT Logic” in the figure)

passes this information to the Policy Manager (PM), via the Policy Interface. The PM instantiates this

abstract QoS, using local policy, in a concrete DSCP value that will be used by the NEAT Flow; the map-

ping from abstract to concrete QoS marking done by the PM could for instance be based on Table 3

(taken from D2.3 [7]). If it wishes to, the application can later query the DSCP value that is actually

used (i.e., the Used DSCP attribute) via P: GET_PROPERTY.

Appendix C provides examples of properties and policies — as actually implemented in the NEAT

prototype described in D2.3 [7] — and their expected result.

2.2.5 NEAT Flow Termination

The next primitives and events are related to gracefully or forcefully closing a NEAT Flow, or informing

the application about this happening.

P: CLOSE()

BThis primitive terminates a NEAT Flow after satisfying all the requirements that were specified

regarding the delivery of data that the application has already given to NEAT. If the peer still has

data to send, it cannot then be received after this call. Data buffered by the NEAT System that

has not yet been given to the network layer will be discarded.

19 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

Table 3: Possible Abstract QoS to DSCP Mappings in NEAT. Some traffic classes such as Video can
have several different capacity requirement levels, the NEAT System exposes these with Very Low, Low,
Medium and High capacity requirements. Applications can also request Admitted access, classes that
can be guaranteed by the network with policy or dynamic provisioning.

Abstract Name DSCP Code DSCP Value

NEAT_QOS_AUDIO_VL CS1 0x08
NEAT_QOS_AUDIO_L DF 0x00
NEAT_QOS_AUDIO_M1 EF 0x2E
NEAT_QOS_AUDIO_H1 EF 0x2E
NEAT_QOS_INTERACTIVE_VIDEO_VL CS1 0x08
NEAT_QOS_INTERACTIVE_VIDEO_L DF 0x00
NEAT_QOS_INTERACTIVE_VIDEO_M1 AF42 0x24
NEAT_QOS_INTERACTIVE_VIDEO_M2 AF43 0x26
NEAT_QOS_INTERACTIVE_VIDEO_H1 AF41 0x22
NEAT_QOS_INTERACTIVE_VIDEO_H2 AF42 0x24
NEAT_QOS_NON_INTERACTIVE_VIDEO_VL CS1 0x08
NEAT_QOS_NON_INTERACTIVE_VIDEO_L DF 0x00
NEAT_QOS_NON_INTERACTIVE_VIDEO_M1 AF32 0x1C
NEAT_QOS_NON_INTERACTIVE_VIDEO_M2 AF33 0x1E
NEAT_QOS_NON_INTERACTIVE_VIDEO_H1 AF31 0x1A
NEAT_QOS_NON_INTERACTIVE_VIDEO_H2 AF32 0x1C
NEAT_QOS_DATA_VL CS1 0x08
NEAT_QOS_DATA_L DF 0x00
NEAT_QOS_DATA_M1 AF11 0x0A
NEAT_QOS_DATA_H1 AF21 0x12
NEAT_QOS_BROADCAST CS3 0x18
NEAT_QOS_REALTIME_INTERACTIVE_DATA CS4 0x20
NEAT_QOS_IMMERSIVE_AUDIO AF41 0x22
NEAT_QOS_IMMERSIVE_VIDEO AF41 0x22
NEAT_QOS_STREAMING AF31 0x1A
NEAT_QOS_BACKGROUND CS1 0x08
NEAT_QOS_ADMITTED_AUDIO EF 0x2E
NEAT_QOS_ADMITTED_VIDEO AF42 0x24
NEAT_QOS_ADMITTED_IMMERSIVE_AUDIO AF42 0x24
NEAT_QOS_ADMITTED_IMMERSIVE_VIDEO AF42 0x24
NEAT_QOS_ADMITTED_DATA AF42 0x24

E: CLOSE()

B This event informs the application that a NEAT Flow was successfully closed.

P: ABORT()

B This primitive terminates a connection without delivering remaining data.

E: ABORT()

B This event informs the application that the other side has aborted the NEAT Flow.

E: TIMEOUT()

B This event informs the application that the NEAT Flow is aborted because the default timeout

20 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

— possibly adjusted by the P: CHANGE_TIMEOUT NEAT Flow maintenance primitive (§ 2.2.4) —

has been reached before data could be delivered.

2.2.6 Writing and reading data

All primitives in this section refer to an open NEAT Flow, i.e., a NEAT Flow that was either actively

established or successfully made available for receiving data.

P: WRITE([stream] [pr_method pr_value] [unordered_flag] data datalen)

stream : the number of the stream to be used (positive integer). This can be omitted if the

NEAT Flow contains only one stream.

pr_method and pr_value : if these parameters are used, then partial reliability is enabled

and pr_method must have an integer value from 1 to 2 to specify which method to imple-

ment partial reliability is requested. Value 1 means: pr_value specifies a time in milliseconds

after which it is unnecessary to send this data block. Value 2 means: pr_value specifies a re-

quested maximum number of attempts to retransmit the data block. If the selected NEAT

transport does not support partial reliability these parameters will be ignored.

unordered_flag : The data block may be delivered out-of-order if this boolean flag is set.

Default: false. If the protocol chosen by the NEAT Selection components does not support

unordered delivery, this parameter will be ignored.

data : data to be sent.

datalen : the amount (positive integer) of data supplied in data.

B This primitive gives NEAT a data block for transmission to the other side of the NEAT Flow

(with reliability limited by the conditions specified via pr_method, pr_value and the transport

protocol used). If the NEAT Flow supports message delimiting, the data block is a complete

message.

P: READ()

Returns: [unordered_flag] [stream_id] data datalen

If a message arrives out of order, this is indicated by unordered_flag. If the underlying

transport protocol supports streams, the stream_id parameter is set.

data : received data.

datalen : the amount of data received.

B This primitive reads data from a NEAT Flow into a provided buffer. If the NEAT Flow supports

message delimiting, the data block is a complete message.

E: WRITABLE()

B This event informs the application that the NEAT Flow is ready to accept new data.

21 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

3 Conclusion

This document presented a stable “final” version of the NEAT User API, based on the rationale outlined

in Deliverable D1.2, but updated from what NEAT should implement (D1.2) to what NEAT currently

does implement. It reflects the agreement of the NEAT consortium on the exposed functionality of

NEAT.

The document reviews the primitives and events related to NEAT Flow initialisation, NEAT Flow

establishment, NEAT Flow availability, NEAT Flow maintenance, reading and writing network data

and NEAT Flow termination.

IETF documents typically describe their API in terms of a traditional socket-like function, in an ab-

stract, language-independent form; this is the form adopted here. A programmer wishing to view the

concrete API in D2.3 [7] is therefore referred to the NEAT Library tutorial and documentation (available

from the main NEAT Project web page, at: https://www.neat-project.org/resources). Also, deliverable

D2.3 provides examples of code utilising the API and descriptions of the way in which the callback

mechanisms can be used.

22 of 89 Project no. 644334

https://www.neat-project.org/resources

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

References

[1] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,” RFC 5681 (Draft Standard),

Internet Engineering Task Force, Sep. 2009. [Online]. Available: http://www.ietf.org/rfc/rfc5681.

txt

[2] D. Black and P. Jones, “Differentiated Services (Diffserv) and Real-Time Communication,”

RFC 7657 (Informational), Internet Engineering Task Force, Nov. 2015. [Online]. Available:

http://www.ietf.org/rfc/rfc7657.txt

[3] ECMA, ECMA-404: The JSON Data Interchange Format. Geneva, Switzerland: ECMA (European

Association for Standardizing Information and Communication Systems), 2013. [Online].

Available: http://www.ecma-international.org/publications/standards/Ecma-404.htm

[4] G. Fairhurst and T. Jones, “Features of the User Datagram Protocol (UDP) and Lightweight

UDP (UDP-Lite) Transport Protocols,” Internet Draft draft-fairhurst-taps-transports-usage-

udp, May 2017, work in progress. [Online]. Available: http://www.ietf.org/internet-drafts/

draft-fairhurst-taps-transports-usage-udp-00.txt

[5] G. Fairhurst (ed.), T. Jones (ed.), Z. Bozakov, A. Brunstrom, D. Damjanovic, T. Eckert, K. Evensen,

K.-J. Grinnemo, A. Hansen, N. Khademi, S. Mangiante, P. McManus, G. Papastergiou, D. Ros,

M. Tüxen, E. Vyncke, and M. Welzl, “NEAT Architecture,” NEAT Project (H2020-ICT-05-2014),

Deliverable D1.1, Dec. 2015. [Online]. Available: https://www.neat-project.org/publications/

[6] D. A. Hayes and G. Armitage, “Improved coexistence and loss tolerance for delay based TCP

congestion control,” in Proc. of the IEEE Local Computer Networks (LCN), Denver, Colorado,

USA, Oct. 2010, pp. 24–31. [Online]. Available: http://dx.doi.org/10.1109/LCN.2010.5735714

[7] N. Khademi, Z. Bozakov, A. Brunstrom, O. Dale, D. Damjanovic, K. R. Evensen, G. Fairhurst,

A. Fischer, K.-J. Grinnemo, T. Jones, S. Mangiante, A. Petlund, D. Ros, I. Rüngeler,

D. Stenberg, M. Tüxen, F. Weinrank, and M. Welzl, “Final Version of Core Transport

System,” NEAT Project (H2020-ICT-05-2014), Deliverable D2.3, Aug. 2017. [Online]. Available:

https://www.neat-project.org/publications/

[8] I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert, and R. Scheffenegger, “Cubic for fast

long-distance networks,” Working Draft, IETF Secretariat, Internet-Draft draft-ietf-tcpm-cubic-

01, January 2016, http://www.ietf.org/internet-drafts/draft-ietf-tcpm-cubic-01.txt. [Online].

Available: http://www.ietf.org/internet-drafts/draft-ietf-tcpm-cubic-01.txt

[9] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind, “Low Extra Delay Background Transport

(LEDBAT),” RFC 6817 (Experimental), Internet Engineering Task Force, Dec. 2012. [Online].

Available: http://www.ietf.org/rfc/rfc6817.txt

[10] M. Welzl and S. Gjessing, “A minimal set of transport services for TAPS systems,” Internet Draft

draft-ietf-taps-minset, work in progress, Oct. 2017. [Online]. Available: https://tools.ietf.org/

html/draft-ietf-taps-minset

[11] M. Welzl, M. Tüxen, and N. Khademi, “On the usage of transport service features provided by

IETF transport protocols,” Internet Draft draft-ietf-taps-transports, Aug. 2017, work in progress.

[Online]. Available: https://tools.ietf.org/html/draft-ietf-taps-transports-usage

23 of 89 Project no. 644334

http://www.ietf.org/rfc/rfc5681.txt
http://www.ietf.org/rfc/rfc5681.txt
http://www.ietf.org/rfc/rfc7657.txt
http://www.ecma-international.org/publications/standards/Ecma-404.htm
http://www.ietf.org/internet-drafts/draft-fairhurst-taps-transports-usage-udp-00.txt
http://www.ietf.org/internet-drafts/draft-fairhurst-taps-transports-usage-udp-00.txt
https://www.neat-project.org/publications/
http://dx.doi.org/10.1109/LCN.2010.5735714
https://www.neat-project.org/publications/
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-cubic-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-cubic-01.txt
http://www.ietf.org/rfc/rfc6817.txt
https://tools.ietf.org/html/draft-ietf-taps-minset
https://tools.ietf.org/html/draft-ietf-taps-minset
https://tools.ietf.org/html/draft-ietf-taps-transports-usage

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

[12] M. Welzl, A. Brunstrom, D. Damjanovic, K. Evensen, T. Eckert, G. Fairhurst, N. Khademi,

S. Mangiante, A. Petlund, D. Ros, and M. Tüxen, “First Version of Services and APIs,”

The NEAT Project (H2020-ICT-05-2014), Deliverable D1.2, Mar. 2016. [Online]. Available:

https://www.neat-project.org/publications/

24 of 89 Project no. 644334

https://www.neat-project.org/publications/

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

A NEAT Terminology

This appendix defines terminology used to describe NEAT. These terms are used throughout this doc-

ument.

Application An entity (program or protocol module) that uses the transport layer for end-to-end de-

livery of data across the network (this may also be an upper layer protocol or tunnel encapsula-

tion). In NEAT, the application data is communicated across the network using the NEAT User

API either directly, or via middleware or a NEAT Application Support API on top of the NEAT User

API.

Characteristics Information Base (CIB) The entity where path information and other collected data

from the NEAT System is stored for access via the NEAT Policy Manager.

NEAT API Framework A callback-based API in NEAT. Once the NEAT base structure has started, using

this framework an application can request a connection (create NEAT Flow), communicate over

it (write data to the NEAT Flow and read received data from the NEAT Flow) and register callback

functions that will be executed upon the occurrence of certain events.

NEAT Application Support Module Example code and/or libraries that provide a more abstract way

for an application to use the NEAT User API. This could include methods to directly support a

middleware library or an interface to emulate the traditional Socket API.

NEAT Component An implementation of a feature within the NEAT System. An example is a “Happy

Eyeballs” component to provide Transport Service selection. Components are designed to be

portable (e.g. platform-independent).

NEAT Diagnostics and Statistics Interface An interface to the NEAT System to access information

about the operation and/or performance of system components, and to return endpoint statis-

tics for NEAT Flows.

NEAT Flow A flow of protocol data units sent via the NEAT User API. For a connection-oriented flow,

this consists of the PDUs related to a specific connection.

NEAT Flow Endpoint The NEAT Flow Endpoint is a NEAT structure that has a similar role to the Trans-

mission Control Block (TCB) in the context of TCP. This is mainly used by the NEAT Logic to

collect the information about a NEAT Flow.

NEAT Framework The Framework components include supporting code and data structures needed

to implement the NEAT User Module. They call other components to perform the functions

required to select and realise a Transport Service. The NEAT User API is an important component

of the NEAT Framework; other components include diagnostics and measurement.

NEAT Logic The NEAT Logic is at the core of the NEAT System as part of the NEAT Framework com-

ponents and is responsible for providing functionalities behind the NEAT User API.

NEAT Policy Manager Part of the NEAT User Module responsible for the policies used for service se-

lection. The Policy Manager is accessed via the (user-space) Policy Interface, portable across

platforms. An implementation of the NEAT Policy Manager may optionally also interface to ker-

nel functions or implement new functions within the kernel (e.g. relating to information about

a specific network interface or protocols).

25 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

NEAT Selection Selection components are responsible for choosing an appropriate transport end-

point and a set of transport components to create a Transport Service Instantiation. This utilises

information passed through the NEAT User API, and combines this with inputs from the NEAT

Policy Manager to identify candidate services and test the suitability of the candidates to make a

final selection.

NEAT Signalling and Handover Signalling and Handover components enable optional interaction

with remote endpoints and network devices to signal the service requested by a NEAT Flow, or to

interpret signalling messages concerning network or endpoint capabilities for a Transport Ser-

vice Instantiation.

NEAT System The NEAT System includes all user-space and kernel-space components needed to re-

alise application communication across the network. This includes all of the NEAT User Module,

and the NEAT Application Support Module.

NEAT User API The API to the NEAT User Module through which application data is exchanged. This

offers Transport Services similar to those offered by the Socket API, but using an event-driven

style of interaction. The NEAT User API provides the necessary information to allow the NEAT

User Module to select an appropriate Transport Service. This is part of the NEAT Framework

group of components.

NEAT User Module The set of all components necessary to realise a Transport Service provided by

the NEAT System. The NEAT User Module is implemented in user space and is designed to be

portable across platforms. It has five main groupings of components: Selection, Policy (i.e. the

Policy Manager and its related information bases and default values), Transport, Signalling and

Handover, and the NEAT Framework. The NEAT User Module is a subset of a NEAT System.

Policy Information Base (PIB) The rules used by the NEAT Policy Manager to guide the selection of

the Transport Service Instantiation.

Policy Interface (PI) The interface to allow querying of the NEAT Policy Manager.

Stream A set of data blocks that logically belong together, such that uniform network treatment would

be desirable for them. A stream is bound to a NEAT Flow. A NEAT Flow contains one or more

streams.

Transport Address A transport address is defined by a network-layer address, a transport-layer pro-

tocol, and a transport-layer port number.

Transport Feature Short for Transport Service Feature.

Transport Service A set of end-to-end features provided to users, without an association to any given

framing protocol, which provides a complete service to an application. The desire to use a spe-

cific feature is indicated through the NEAT User API.

Transport Service Feature A specific end-to-end feature that the transport layer provides to an appli-

cation. Examples include confidentiality, reliable delivery, ordered delivery and message-versus-

stream orientation.

26 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

Transport Service Instantiation An arrangement of one or more transport protocols with a selected

set of features and configuration parameters that implements a single Transport Service. Exam-

ples include: a protocol stack to support TCP, UDP, or SCTP over UDP with the partial reliability

option.

27 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

B Reasons for changes from D1.2

It is not surprising that D1.3 includes new API elements with respect to D1.2: the NEAT code base has

grown and new functionality has been added. When D1.2 was written, it was impossible to envision

every single function that the NEAT consortium may find to be useful further down the road. However,

some D1.2 functionality has also been removed or changed. This section explains the reasons for the

most significant such changes that were made to the abstract API since Deliverable D1.2.

• P: INIT_FLOW parameter messages: this boolean parameter specified whether message bound-

aries are preserved (true) or not (false). We found this unnecessary because data can be handed

over as messages in any case, along with properties such as “partial reliability” or “out-of-order”,

and still be handed over from NEAT to the application as a byte-stream. A receiving applica-

tion can fully use messaging functionality as long as 1) messages remain intact (i.e., if NEAT

begins to hand over a message, it must later continue with the remaining data of the same mes-

sage until the message is complete), and 2) the receiving application is able to determine frame

boundaries inside the received byte-stream on its own. This “Application-Framed Bytestream”

(AFra-Bytestream) concept is explained in detail in [10].

• P: REQUEST_CAPACITY was removed: the NEAT consortium found it more useful to indicate the

capacity needed by the application via policy.

• E: RATE_HINT(), E: SLOWDOWN() and the NEAT Flow property Flow metadata privacy were re-

moved because these events and this property relate to network signaling. For security / privacy

reasons, the consortium has decided against the use of network signaling.

• Optimise for continuous connectivity: This boolean property was meant to enable or disable

mechanisms that try to make communication more robust, perhaps at some cost (e.g., lower

throughput). It was removed because the envisioned functionality was related to mobility, which

is no longer a main focus of the project’s final use cases.

• NEAT flow disable dynamic enhancement: This boolean property was meant to allow prevent-

ing NEAT from changing the behaviour of a flow on-the-fly. For example, changing the under-

lying transport protocol during the lifetime of a flow could be prevented with this. This func-

tionality was removed for the sake of simplifying the API, as we did not implement such in-flight

protocol changes (these would be mostly relevant in case of mobility).

• NEAT flow delay budget: This was a floating point number that would indicate a “delay budget”

in milliseconds, to communicate more or less stringent time requirements. This functionality

turned out to be unnecessary for Celerway’s use case, and was hence not implemented, and

removed from the abstract API.

• In D1.2, the property NEAT flow low latency allows to specify a desired maximum send buffer

size (advisory only). We found that it would be better to replace this functionality with the ability

to specify a “low watermark”, where draining the buffer below a certain level will provoke an

event. This event (E: WRITABLE()) has also been added.

• P: WRITE parameter [priority] was removed because this per-message priority was found to be

unnecessary; it could also create consistency problems in conjunction with per-flow priorities.

28 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

• In P: READ, partial message delivery was removed because it was decided that this is not an im-

portant functionality for NEAT, at least for now. It can also get in the way of the “Application-

Framed Bytestream” concept, see [10].

• P: OPEN_WITH_EARLY_DATA has been added to accommodate the TCP Fast Open option and TLS

1.3 early data.

• P: OPEN, P: ACCEPT and P: CLOSE explanations have been adapted to match the stricter open/-

close semantics imposed by transparent stream mapping. For example, when a NEAT Flow is a

stream of an already existing association, opening the flow may not have any effect on the wire,

and can not be assumed to trigger “accept”; the peer may have to wait until actual user data is

transferred.

• Some functions are now taken care of by the policy system instead of API primitives; these were

removed and explained in Appendix C, which briefly introduces NEAT’s policy system.

29 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

C Examples of Policy

The Policy Interface, depicted in Figure 1, is an important part of the NEAT System, taking input pa-

rameters read from configuration files and parameters passed via the NEAT User API. Using policy

information the Policy Manager of the NEAT System can evaluate and enforce abstract and high-level

policies, as introduced in the architecture description in D1.1 [5]. This provides a flexible way to im-

plement features that the application requires or desires, without having to define specific NEAT User

API calls for these features.

The Policy Manager is configured using a set of policy profiles supplied as JSON-formatted files.

When used in this way, the application does not directly interact with the Policy Manager. The in-

formation held in the Policy Information Base (PIB) and Characteristics Information Base (CIB) is

combined with the profile and is used to make policy decisions. Deliverable D2.3 [7] describes the

operation of the Policy Manager.

The NEAT User API allows an application to inspect the outcome of the policy decisions taken by

Policy Manager with the P: GET_PROPERTY primitive. Figure 4 shows this interaction through the Policy

Interface.

Similarly, an application can use the P: SET_PROPERTIES primitive to pass application requirements

to the Policy Manager (see Figure 4). These requirements are expressed as a JSON message, using

the prototype described in D2.3 [7]. The use of messages encoded in JSON strings provides greater

flexibility and extensibility, compared with using a pre-defined C-level API.

The operation of NEAT’s Policy system and its relation to the properties of a NEAT Flow (introduced

in § 2.1) is most easily explained using concrete examples. This appendix therefore provides a set of

examples of policies and their usage in the NEAT System.

C.1 JSON format

JSON (JavaScript Object Notation) is a language-independent, lightweight data-interchange format,

designed to be easy to read and write and is fully described in [3]. The text format of a message is

based on a subset of the JavaScript Programming Language.

JSON is built on two structures:

• A collection of name/value pairs.

• An ordered list of values.

with the following tokens defined:

• Object: An unordered set of name/value pairs. An object begins with “{” (left brace) and ends

with “}” (right brace). Each name is followed by “:” (colon) and the name/value pairs are sepa-

rated by “,” (comma).

• Array: An ordered collection of values. An array begins with “[” (left bracket) and ends with “]”

(right bracket). Values are separated by “,” (comma).

• Value: A string in double quotes, or a number, or true or false or null, or an object or an array.

These structures can be nested.

• String: A sequence of zero or more Unicode characters, wrapped in double quotes, using back-

slash escapes. A character is represented as a single character string.

30 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

C.2 Profiles

The NEAT Policy system makes aggregate policy groups available as profiles. Profiles give an applica-

tion a single point to access a common set of properties at once. The NEAT System has the following

Profiles available:

• default: Used when none is specified.

• elephant_flows: Tagging of flows to mark them as requiring a large capacity.

• low_latency: Low Latency Profile.

• low_latency_tcp: Low Latency Profile for TCP.

• reliable_transports: Predefined set of reliable transport protocols (TCP, SCTP, SCTP/UDP).

Listing 1 is shown below as an example of one of these Profiles.

1 {

2 "uid":"low_latency",

3 "description":"low latency profile",

4 "priority": 1,

5 "replace_matched": true,

6 "match":{

7 "low_latency": {

8 "precedence": 1,

9 "value": true

10 }

11 },

12 "properties":{

13 "RTT": {

14 "precedence": 1,

15 "value": {"start":0, "end":50},

16 "score": 5

17 },

18 "low_latency_interface": {

19 "value": true, "precedence": 1},

20 "is_wired_interface": {

21 "value": true, "precedence": 2}

22 }

23 }

Listing 1: Example of the Low Latency Profile.

C.3 Examples

C.3.1 Default Policy Profile

It is optional for a NEAT Application to use the policy system. When no properties are specified via P:

SET_PROPERTIES, the NEAT System uses the default policy profile, shown in Listing 2.

31 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

1 {

2 "uid":"default",

3 "description":"default properties: profile matches ANY request",

4 "policy_type": "profile",

5 "priority": 0,

6 "properties":{

7 "transport": {

8 "value": "reliable",

9 "precedence": 0

10 },

11 "low_latency": {

12 "value": false,

13 "precedence": 0

14 },

15 "capacity_profile": {

16 "value": "best_effort",

17 "precedence": 0

18 },

19 "high_availability": {

20 "value": true,

21 "precedence": 0

22 },

23 "dscp_value": {

24 "value": 0,

25 "precedence": 0

26 },

27 "remote_ip": {

28 "value": null,

29 "precedence": 0,

30 "score": 0

31 },

32 "port": {

33 "value": null,

34 "precedence": 0,

35 "score": 0

36 }

37 }

38 }

Listing 2: Default Policy Profile.

C.3.2 Example of Transport Selection Properties

The API to Internet Transport that the NEAT System offers makes it possible for an application to

leave transport selection to the NEAT System. Listing 3 is an example of the properties sent through

the NEAT User API, using the P: SET_PROPERTIES call, where the NEAT System is allowed to attempt

automatic selection between TCP and SCTP when selecting the transport protocol.

1 {

2 "transport": {

32 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

3 "value": ["tcp", "sctp"],

4 "precedence": 1 }

5 }

Listing 3: JSON properties that select reliable transport protocols.

Listing 5 is an alternative example of an application requesting reliable transport protocols us-

ing the pre-defined transport_profile profile (shown in Listing 4); that is, passing the properties

shown in Listing 5 via P: SET_PROPERTIES results in the profile displayed in Listing 4 to be selected,

since this profile matches the request expressed via the passed JSON properties.

1 {

2 "uid":"reliable_transports",

3 "description":"reliable transport protocols profile",

4 "policy_type": "profile",

5 "priority": 2,

6 "replace_matched": true,

7 "match":{

8 "transport": {"value": "reliable"}

9 },

10 "properties":[

11 [{"transport": { "value": "SCTP", "precedence": 2, "score": 3}},

12 {"transport": { "value": "TCP", "precedence": 2, "score": 2}},

13 {"transport": { "value": "SCTP/UDP", "precedence": 2, "score": 1}}

14]

15]

16 }

Listing 4: Reliable Transport Profile.

1 {

2 "transport": {

3 "value":"reliable",

4 "precedence":2 }

5 }

Listing 5: JSON properties that select the Reliable Transport Profile.

C.3.3 Multihoming Transport Protocol

Listing 6 is an example of properties specifying multihoming, that allows the NEAT System to perform

selection between the use of MPTCP and SCTP.

1 {

2 "transport": [

3 {

4 "value": "SCTP",

5 "precedence": 1

6 },

7 {

8 "value": "TCP",

9 "precedence": 1

33 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

10 }

11],

12 "multihoming": {

13 "value": true,

14 "precedence": 1

15 },

16 "local_ips": [

17 {

18 "value": "10.0.2.15",

19 "precedence": 1

20 },

21 {

22 "value": "192.168.56.2",

23 "precedence": 1

24 }

25]

26 }

Listing 6: JSON properties that select the Multihoming Profile.

34 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

D Internet-draft: A Minimal Set of Transport Services for TAPS Sys-

tems

The following Internet Draft [10], a Working Group Item of the IETF Transport Services working group

(TAPS), has been produced by project participants.

35 of 89 Project no. 644334

TAPS M. Welzl
Internet-Draft S. Gjessing
Intended status: Informational University of Oslo
Expires: April 25, 2018 October 22, 2017

 A Minimal Set of Transport Services for TAPS Systems
 draft-ietf-taps-minset-00

Abstract

 This draft recommends a minimal set of IETF Transport Services
 offered by end systems supporting TAPS, and gives guidance on
 choosing among the available mechanisms and protocols. It is based
 on the set of transport features given in the TAPS document draft-
 ietf-taps-transports-usage-08 .

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79 .

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/ .

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Welzl & Gjessing Expires April 25, 2018 [Page 1]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

36 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

Table of Contents

 1. Introduction . 2
 2. Terminology . 4
 3. The Minimal Set of Transport Features 5
 3.1 . Flow Creation . 5
 3.2 . Flow Connection and Termination 7
 3.3 . Flow Group Configuration 8
 3.4 . Flow Configuration 8
 3.5 . Data Transfer . 9
 3.5.1 . The Sender . 9
 3.5.2 . The Receiver . 10
 4. An MinSet Abstract Interface 11
 4.1 . Specification . 12
 5. Conclusion . 17
 6. Acknowledgements . 18
 7. IANA Considerations . 18
 8. Security Considerations 18
 9. References . 18
 9.1 . Normative References 18
 9.2 . Informative References 19
 Appendix A . Deriving the minimal set 21
 A.1. Step 1: Categorization -- The Superset of Transport
 Features . 21
 A.1.1 . CONNECTION Related Transport Features 23
 A.1.2 . DATA Transfer Related Transport Features 38
 A.2. Step 2: Reduction -- The Reduced Set of Transport
 Features . 43
 A.2.1 . CONNECTION Related Transport Features 44
 A.2.2 . DATA Transfer Related Transport Features 45
 A.3 . Step 3: Discussion 46
 A.3.1 . Sending Messages, Receiving Bytes 46
 A.3.2 . Stream Schedulers Without Streams 48
 A.3.3 . Early Data Transmission 49
 A.3.4 . Sender Running Dry 50
 A.3.5 . Capacity Profile 50
 A.3.6 . Security . 51
 A.3.7 . Packet Size . 51
 Appendix B . Revision information 52
 Authors’ Addresses . 53

1. Introduction

 The task of any system that implements TAPS is to offer transport
 services to its applications, i.e. the applications running on top of
 TAPS, without binding them to a particular transport protocol.
 Currently, the set of transport services that most applications use
 is based on TCP and UDP; this limits the ability for the network

Welzl & Gjessing Expires April 25, 2018 [Page 2]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

37 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 stack to make use of features of other protocols. For example, if a
 protocol supports out-of-order message delivery but applications
 always assume that the network provides an ordered bytestream, then
 the network stack can never utilize out-of-order message delivery:
 doing so would break a fundamental assumption of the application.

 By exposing the transport services of multiple transport protocols, a
 TAPS system can make it possible to use these services without having
 to statically bind an application to a specific transport protocol.
 The first step towards the design of such a system was taken by
 [RFC8095], which surveys a large number of transports, and [TAPS2] as
 well as [TAPS2UDP], which identify the specific transport features
 that are exposed to applications by the protocols TCP, MPTCP, UDP(-
 Lite) and SCTP as well as the LEDBAT congestion control mechanism.
 The present draft is based on these documents and follows the same
 terminology (also listed below).

 The number of transport features of current IETF transports is large,
 and exposing all of them has a number of disadvantages: generally,
 the more functionality is exposed, the less freedom a TAPS system has
 to automate usage of the various functions of its available set of
 transport protocols. Some functions only exist in one particular
 protocol, and if an application would use them, this would statically
 tie the application to this protocol, counteracting the purpose of a
 TAPS system. Also, if the number of exposed features is exceedingly
 large, a TAPS system might become very hard to use for an application
 programmer. Taking [TAPS2] as a basis, this document therefore
 develops a minimal set of transport features, removing the ones that
 could be harmful to the purpose of a TAPS system but keeping the ones
 that must be retained for applications to benefit from useful
 transport functionality.

 Applications use a wide variety of APIs today. The transport
 features in the minimal set in this document must be reflected in
 all network APIs in order for the underlying functionality to
 become usable everywhere. For example, it does not help an
 application that talks to a middleware if only the Berkeley Sockets
 API is extended to offer "unordered message delivery", but the
 middleware only offers an ordered bytestream. Both the Berkeley
 Sockets API and the middleware would have to expose the "unordered
 message delivery" transport feature (alternatively, there may be
 interesting ways for certain types of middleware to use some
 transport features without exposing them, based on knowledge about
 the applications -- but this is not the general case). In most
 situations, in the interest of being as flexible and efficient as
 possible, the best choice will be for a middleware or library to
 expose at least all of the transport features that are recommended as
 a "minimal set" here.

Welzl & Gjessing Expires April 25, 2018 [Page 3]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

38 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 This "minimal set" can be implemented one-sided with a fall-back to
 TCP (or UDP, if certain limitations are put in place). This means
 that a sender-side TAPS system can talk to a non-TAPS TCP (or UDP)
 receiver, and a receiver-side TAPS system can talk to a non-TAPS TCP
 (or UDP) sender. For systems that do not have this requirement,
 [I-D.trammell-taps-post-sockets] describes a way to extend the
 functionality of the minimal set such that some of its limitations
 are removed.

2. Terminology

 The following terms are used throughout this document, and in
 subsequent documents produced by TAPS that describe the composition
 and decomposition of transport services.

 Transport Feature: a specific end-to-end feature that the transport
 layer provides to an application. Examples include
 confidentiality, reliable delivery, ordered delivery, message-
 versus-stream orientation, etc.
 Transport Service: a set of Transport Features, without an
 association to any given framing protocol, which provides a
 complete service to an application.
 Transport Protocol: an implementation that provides one or more
 different transport services using a specific framing and header
 format on the wire.
 Transport Service Instance: an arrangement of transport protocols
 with a selected set of features and configuration parameters that
 implements a single transport service, e.g., a protocol stack (RTP
 over UDP).
 Application: an entity that uses the transport layer for end-to-end
 delivery data across the network (this may also be an upper layer
 protocol or tunnel encapsulation).
 Application-specific knowledge: knowledge that only applications
 have.
 Endpoint: an entity that communicates with one or more other
 endpoints using a transport protocol.
 Connection: shared state of two or more endpoints that persists
 across messages that are transmitted between these endpoints.
 Socket: the combination of a destination IP address and a
 destination port number.

 Moreover, throughout the document, the protocol name "UDP(-Lite)" is
 used when discussing transport features that are equivalent for UDP
 and UDP-Lite; similarly, the protocol name "TCP" refers to both TCP
 and MPTCP.

Welzl & Gjessing Expires April 25, 2018 [Page 4]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

39 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

3. The Minimal Set of Transport Features

 Based on the categorization, reduction and discussion in Appendix A ,
 this section describes the minimal set of transport features that is
 offered by end systems supporting TAPS. This TAPS system is able to
 fall back to TCP; elements of the system that may prohibit falling
 back to UDP are marked with "!UDP". To implement a TAPS system that
 is also able to fall back to UDP, these marked transport features
 should be excluded.

3.1 . Flow Creation

 A TAPS flow must be "created" before it is connected, to allow for
 initial configurations to be carried out. All configuration
 parameters in Section 3.3 and Section 3.4 can be used initially,
 although some of them may only take effect when the flow has been
 connected. Configuring a flow early helps a TAPS system make the
 right decisions. In particular, the "group number" can influence the
 TAPS system to implement a TAPS flow as a stream of a multi-streaming
 protocol’s existing association or not.

 For flows that use a new "group number", early configuration is
 necessary because it allows the TAPS system to know which protocols
 it should try to use (to steer a mechanism such as "Happy Eyeballs"
 [I-D.grinnemo-taps-he]). In particular, a TAPS system that only
 makes a one-time choice for a particular protocol must know early
 about strict requirements that must be kept, or it can end up in a
 deadlock situation (e.g., having chosen UDP and later be asked to
 support reliable transfer). As one possibility to correctly handle
 these cases, we provide the following decision tree (this is derived
 from Appendix A.2.1 excluding authentication, as explained in
 Section 8):

Welzl & Gjessing Expires April 25, 2018 [Page 5]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

40 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 - Will it ever be necessary to offer any of the following?
 * Reliably transfer data
 * Notify the peer of closing/aborting
 * Preserve data ordering

 Yes: SCTP or TCP can be used.
 - Is any of the following useful to the application?
 * Choosing a scheduler to operate between flows in a group,
 with the possibility to configure a priority or weight per flow
 * Configurable message reliability
 * Unordered message delivery
 * Request not to delay the acknowledgement (SACK) of a message

 Yes: SCTP is preferred.
 No:
 - Is any of the following useful to the application?
 * Hand over a message to reliably transfer (possibly
 multiple times) before connection establishment
 * Suggest timeout to the peer
 * Notification of Excessive Retransmissions (early
 warning below abortion threshold)
 * Notification of ICMP error message arrival

 Yes: TCP is preferred.
 No: SCTP and TCP are equally preferable.

 No: all protocols can be used.
 - Is any of the following useful to the application?
 * Specify checksum coverage used by the sender
 * Specify minimum checksum coverage required by receiver

 Yes: UDP-Lite is preferred.
 No: UDP is preferred.

 Note that this decision tree is not optimal for all cases. For
 example, if an application wants to use "Specify checksum coverage
 used by the sender", which is only offered by UDP-Lite, and
 "Configure priority or weight for a scheduler", which is only offered
 by SCTP, the above decision tree will always choose UDP-Lite, making
 it impossible to use SCTP’s schedulers with priorities between flows
 in a group. The TAPS system must know which choice is more important
 for the application in order to make the best decision. We caution
 implementers to be aware of the full set of trade-offs, for which we
 recommend consulting the list in Appendix A.2.1 when deciding how to
 initialize a flow.

Welzl & Gjessing Expires April 25, 2018 [Page 6]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

41 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 Once a flow is created, it can be queried for the maximum amount of
 data that an application can possibly expect to have reliably
 transmitted before or during connection establishment (with zero
 being a possible answer). An application can also give the flow a
 message for reliable transmission before or during connection
 establishment (!UDP); the TAPS system will then try to transmit it as
 early as possible. An application can facilitate sending the message
 particularly early by marking it as "idempotent"; in this case, the
 receiving application must be prepared to potentially receive
 multiple copies of the message (because idempotent messages are
 reliably transferred, asking for idempotence is not necessary for
 systems that support UDP-fall-back).

3.2 . Flow Connection and Termination

 To be compatible with multiple transports, including streams of a
 multi-streaming protocol (used as if they were transports
 themselves), the semantics of opening and closing need to be the most
 restrictive subset of all of them. For example, TCP’s support of
 half-closed connections can be seen as a feature on top of the more
 restrictive "ABORT"; this feature cannot be supported because not all
 protocols used by a TAPS system (including streams of an association)
 support half-closed connections.

 After creation, a flow can be actively connected to the other side
 using "Connect", or it can passively listen for incoming connection
 requests with "Listen". Note that "Connect" may or may not trigger a
 notification on the listening side. It is possible that the first
 notification on the listening side is the arrival of the first data
 that the active side sends (a receiver-side TAPS system could handle
 this by continuing to block a "Listen" call, immediately followed by
 issuing "Receive", for example; callback-based implementations may
 simply skip the equivalent of "Listen"). This also means that the
 active opening side is assumed to be the first side sending data.

 A TAPS system can actively close a connection, i.e. terminate it
 after reliably delivering all remaining data to the peer, or it can
 abort it, i.e. terminate it without delivering remaining data.
 Unless all data transfers only used unreliable frame transmission
 without congestion control (i.e., UDP-style transfer), closing a
 connection is guaranteed to cause an event to notify the peer
 application that the connection has been closed (!UDP). Similarly,
 for anything but (UDP-style) unreliable non-congestion-controlled
 data transfer, aborting a connection will cause an event to notify
 the peer application that the connection has been aborted (!UDP). A
 timeout can be configured to abort a flow when data could not be
 delivered for too long (!UDP); however, timeout-based abortion does
 not notify the peer application that the connection has been aborted.

Welzl & Gjessing Expires April 25, 2018 [Page 7]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

42 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 Because half-closed connections are not supported, when a TAPS host
 receives a notification that the peer is closing or aborting the flow
 (!UDP), the other side may not be able to read outstanding data.
 This means that unacknowledged data residing in the TAPS system’s
 send buffer may have to be dropped from that buffer upon arrival of a
 notification to close or abort the flow from the peer.

3.3 . Flow Group Configuration

 A flow group can be configured with a number of transport features,
 and there are some notifications to applications about a flow group.
 Here we list transport features and notifications from Appendix A.2
 that sometimes automatically apply to groups of flows (e.g., when a
 flow is mapped to a stream of a multi-streaming protocol).

 Timeout, error notifications:

 o Change timeout for aborting connection (using retransmit limit or
 time value) (!UDP)
 o Suggest timeout to the peer (!UDP)
 o Notification of Excessive Retransmissions (early warning below
 abortion threshold)
 o Notification of ICMP error message arrival

 Others:

 o Choose a scheduler to operate between flows of a group
 o Obtain ECN field

 The following transport features are new or changed, based on the
 discussion in Appendix A.3 :

 o Capacity profile
 This describes how an application wants to use its available
 capacity. Choices can be "lowest possible latency at the expense
 of overhead" (which would disable any Nagle-like algorithm),
 "scavenger", and some more values that help determine the DSCP
 value for a flow (e.g. similar to table 1 in
 [I-D.ietf-tsvwg-rtcweb-qos]).

3.4 . Flow Configuration

 Here we list transport features and notifications from Appendix A.2
 that only apply to a single flow.

 Configure priority or weight for a scheduler

Welzl & Gjessing Expires April 25, 2018 [Page 8]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

43 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 Checksums:

 o Disable checksum when sending
 o Disable checksum requirement when receiving
 o Specify checksum coverage used by the sender
 o Specify minimum checksum coverage required by receiver

3.5 . Data Transfer

3.5.1 . The Sender

 This section discusses how to send data after flow establishment.
 Section 3.2 discusses the possiblity to hand over a message to
 reliably send before or during establishment.

 Here we list per-frame properties that a sender can optionally
 configure if it hands over a delimited frame for sending with
 congestion control (!UDP), taken from Appendix A.2 :

 o Configurable Message Reliability
 o Ordered message delivery (potentially slower than unordered)
 o Unordered message delivery (potentially faster than ordered)
 o Request not to bundle messages
 o Request not to delay the acknowledgement (SACK) of a message

 Additionally, an application can hand over delimited frames for
 unreliable transmission without congestion control (note that such
 applications should perform congestion control in accordance with
 [RFC2914]). Then, none of the per-frame properties listed above have
 any effect, but it is possible to use the transport feature "Specify
 DF field" to allow/disallow fragmentation.

 Following Appendix A.3.7 , there are three transport features (two
 old, one new) and a notification:

 o Get max. transport frame size that may be sent without
 fragmentation from the configured interface
 This is optional for a TAPS system to offer, and may return an
 error ("not available"). It can aid applications implementing
 Path MTU Discovery.

 o Get max. transport frame size that may be received from the
 configured interface
 This is optional for a TAPS system to offer, and may return an
 error ("not available").

Welzl & Gjessing Expires April 25, 2018 [Page 9]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

44 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 o Get maximum transport frame size
 Irrespective of fragmentation, there is a size limit for the
 messages that can be handed over to SCTP or UDP(-Lite); because a
 TAPS system is independent of the transport, it must allow a TAPS
 application to query this value -- the maximum size of a frame in
 an Application-Framed-Bytestream. This may also return an error
 when frames are not delimited ("not available").

 There are two more sender-side notifications. These are unreliable,
 i.e. a TAPS system cannot be assumed to implement them, but they may
 occur:

 o Notification of send failures
 A TAPS system may inform a sender application of a failure to send
 a specific frame.

 o Notification of draining below a low water mark
 A TAPS system can notify a sender application when the TAPS
 system’s filling level of the buffer of unsent data is below a
 configurable threshold in bytes. Even for TAPS systems that do
 implement this notification, supporting thresholds other than 0 is
 optional.

 "Notification of draining below a low water mark" is a generic
 notification that tries to enable uniform access to
 "TCP_NOTSENT_LOWAT" as well as the "SENDER DRY" notification (as
 discussed in Appendix A.3.4 -- SCTP’s "SENDER DRY" is a special case
 where the threshold (for unsent data) is 0 and there is also no more
 unacknowledged data in the send buffer). Note that this threshold
 and its notification should operate across the buffers of the whole
 TAPS system, i.e. also any potential buffers that the TAPS system
 itself may use on top of the transport’s send buffer.

3.5.2 . The Receiver

 A receiving application obtains an Application-Framed Bytestream.
 Similar to TCP’s receiver semantics, it is just a stream of bytes.
 If frame boundaries were specified by the sender, a receiver-side
 TAPS system will still not inform the receiving application about
 them. Within the bytestream, frames themselves will always stay
 intact (partial frames are not supported - see Appendix A.3.1).
 Different from TCP’s semantics, there is no guarantee that all frames
 in the bytestream are transmitted from the sender to the receiver,

Welzl & Gjessing Expires April 25, 2018 [Page 10]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

45 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 and that all of them are in the same sequence in which they were
 handed over by the sender. If an application is aware of frame
 delimiters in the bytestream, and if the sender-side application has
 informed the TAPS system about these boundaries and about potentially
 relaxed requirements regarding the sequence of frames or per-frame
 reliability, frames within the receiver-side bytestream may be out-
 of-order or missing.

4. An MinSet Abstract Interface

 Here we present the minimum set in the form of an abstract interface
 that a TAPS system could implement. This abstract interface is
 derived from the description in the previous section. The primitives
 of this abstract interface can be implemented in various ways. For
 example, information that is provided to an application can either be
 offered via a primitive that is polled, or via an asynchronous
 notification.

 We note that this is just a different form to represent the text in
 the previous section, and not an abstract API that is recommended to
 be implemented in this form by all TAPS systems. Specifically, TAPS
 systems implementing this specific abstract interface would have the
 following properties:

 1. Support one-sided deployment with a fall-back to TCP (or UDP)
 2. Offer all the transport features of (MP)TCP, UDP(-Lite), LEDBAT
 and SCTP that require application-specific knowledge
 3. Not offer any of the transport features of these protocols and
 the LEDBAT congestion control mechanism that do not require
 application-specific knowledge (to give maximum flexibility to a
 TAPS system)

 This reciprocally means that this is probably not the ideal interface
 to implement for systems that:

 1. Assume that there is a system on both sides -- in this case,
 richer functionality can be provided (cf.
 [I-D.trammell-taps-post-sockets]) -- or assume different fall-
 back protocols than TCP or UDP
 2. Use other protocols than (MP)TCP, UDP(-Lite), SCTP or the LEDBAT
 congestion control mechanism underneath the TAPS interface
 3. Want to offer transport features that do not require application-
 specific knowledge

Welzl & Gjessing Expires April 25, 2018 [Page 11]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

46 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

4.1 . Specification

 CREATE (flow-group-id, reliability, checksum_coverage,
 config_msg_prio, earlymsg_timeout_notifications)
 Returns: flow-id

 Create a flow and associate it with an existing or new flow group
 number. The group number can influence the TAPS system to implement
 a TAPS flow as a stream of a multi-streaming protocol’s existing
 association or not, and the other parameters serve as input to the
 decision tree described in Section 3.1 . The TAPS systems gives no
 guarantees about honoring any of the requests at this stage, these
 parameters are just meant to help it to choose and configure a
 suitable protocol.

 PARAMETERS:

 flow-group-id: the flow’s group number; all other parameters are
 only relevant when this number is not currently in use by an
 ongoing flow to the same destination (in which case the flow
 becomes a member of the existing flow’s group and inherits the
 configuration of the group).
 reliability: a boolean that should be set to true when any of the
 following will be useful to the application: reliably transfer
 data; notify the peer of closing/aborting; preserve data ordering.
 checksum_coverage: a boolean to specify whether it will be useful to
 the application to specify checksum coverage when sending or
 receiving.
 config_msg_prio: a boolean that should be set to true when any of
 the following per-message configuration or prioritization
 mechanisms will be useful to the application: choosing a scheduler
 to operate between flows in a group, with the possibility to
 configure a priority or weight per flow; configurable message
 reliability; unordered message delivery; requesting not to delay
 the acknowledgement (SACK) of a message.
 earlymsg_timeout_notifications: a boolean that should be set to true
 when any of the following will be useful to the application: hand
 over a message to reliably transfer (possibly multiple times)
 before connection establishment; suggest timeout to the peer;
 notification of excessive retransmissions (early warning below
 abortion threshold); notification of ICMP error message arrival.

 (!UDP) CONFIGURE_TIMEOUT (flow-group-id [timeout] [peer_timeout]
 [retrans_notify])

 This configures timeouts for all flows in a group. Configuration
 should generally be carried out as early as possible, ideally before
 flows are connected, to aid the TAPS system’s decision taking.

Welzl & Gjessing Expires April 25, 2018 [Page 12]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

47 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 PARAMETERS:

 timeout: a timeout value for aborting connections, in seconds
 peer_timeout: a timeout value to be suggested to the peer (if
 possible), in seconds
 retrans_notify: the number of retransmissions after which the
 application should be notifed of "Excessive Retransmissions"

 CONFIGURE_CHECKSUM (flow-id [send [send_length]] [receive
 [receive_length]])

 This configures the usage of checksums for a flow in a group.
 Configuration should generally be carried out as early as possible,
 ideally before the flow is connected, to aid the TAPS system’s
 decision taking. "send" parameters concern using a checksum when
 sending, "receive" parameters concern requiring a checksum when
 receiving. There is no guarantee that any checksum limitations will
 indeed be enforced; all defaults are: "full coverage, checksum
 enabled".

 PARAMETERS:

 send: boolean, enable / disable usage of a checksum
 send_length: if send is true, this optional parameter can provide
 the desired coverage of the checksum in bytes
 receive: boolean, enable / disable requiring a checksum
 receive_length: if receive is true, this optional parameter can
 provide the required minimum coverage of the checksum in bytes

 CONFIGURE_URGENCY (flow-group-id [scheduler] [capacity_profile]
 [low_watermark])

 This carries out configuration related to the urgency of sending data
 on flows of a group. Configuration should generally be carried out
 as early as possible, ideally before flows are connected, to aid the
 TAPS system’s decision taking.

 PARAMETERS:

 scheduler: a number to identify the type of scheduler that should be
 used to operate between flows in the group (no guarantees given).
 Future versions of this document will be self contained, but for
 now we suggest the schedulers defined in
 [I-D.ietf-tsvwg-sctp-ndata].
 capacity_profile: a number to identify how an application wants to
 use its available capacity. Future versions of this document will

Welzl & Gjessing Expires April 25, 2018 [Page 13]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

48 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 be self contained, but for now choices can be "lowest possible
 latency at the expense of overhead" (which would disable any
 Nagle-like algorithm), "scavenger", and some more values that help
 determine the DSCP value for a flow (e.g. similar to table 1 in
 [I-D.ietf-tsvwg-rtcweb-qos]).
 low_watermark: a buffer limit (in bytes); when the sender has less
 then low_watermark bytes in the buffer, the application may be
 notified. Notifications are not guaranteed, and supporting
 watermark numbers greater than 0 is not guaranteed.

 CONFIGURE_PRIORITY (flow-id priority)

 This configures a flow’s priority or weight for a scheduler.
 Configuration should generally be carried out as early as possible,
 ideally before flows are connected, to aid the TAPS system’s decision
 taking.

 PARAMETERS:

 priority: future versions of this document will be self contained,
 but for now we suggest the priority as described in
 [I-D.ietf-tsvwg-sctp-ndata].

 NOTIFICATIONS
 Returns: flow-group-id notification_type

 This is fired when an event occurs, notifying the application about
 something happening in relation to a flow group. Notification types
 are:

 Excessive Retransmissions: the configured (or a default) number of
 retransmissions has been reached, yielding this early warning
 below an abortion threshold.
 ICMP Arrival (parameter: ICMP message): an ICMP packet carrying the
 conveyed ICMP message has arrived.
 ECN Arrival (parameter: ECN value): a packet carrying the conveyed
 ECN value has arrived. This can be useful for applications
 implementing congestion control.
 Timeout (parameter: s seconds): data could not be delivered for s
 seconds.
 Close: the peer has closed the connection. The peer has no more
 data to send, and will not read more data. Data that is in
 transit or resides in the local send buffer will be discarded.
 Abort: the peer has aborted the connection. The peer has no more
 data to send, and will not read more data. Data that is in
 transit or resides in the local send buffer will be discarded.

Welzl & Gjessing Expires April 25, 2018 [Page 14]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

49 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 Note that there is no guarantee that this notification will be
 invoked when the peer aborts.
 Drain: the send buffer has either drained below the configured low
 water mark or it has become completely empty.
 Path Change (parameter: path identifier): the path has changed; the
 path identifier is a number that can be used to determine a
 previously used path is used again (e.g., the TAPS system has
 switched from one interface to the other and back).
 Send Failure (parameter: frame identifier): this informs the
 application of a failure to send a specific frame. There can be a
 send failure without this notification happening.

 QUERY_PROPERTIES (flow-group-id property_identifier)
 Returns: requested property (see below)

 This allows to query some properties of a flow group. Return values
 per property identifier are:

 o The maximum frame size that may be sent without fragmentation, in
 bytes (or "not available")
 o The maximum transport frame size that can be sent, in bytes (or
 "not available")
 o The maximum transport frame size that can be received, in bytes
 (or "not available")
 o The maximum amount of data that can possibly be sent before or
 during connection establishment, in bytes (or "not available")

 CONNECT (flow-id dst_addr)

 Connects a flow. This primitive may or may not trigger a
 notification (continuing LISTEN) on the listening side. If a send
 precedes this call, then data may be transmitted with this connect.

 PARAMETERS:

 dst_addr: the destination transport address to connect to

 LISTEN (flow-id)

 Blocking passive connect, listening on all interfaces. This may not
 be the direct result of the peer calling CONNECT - it may also be
 invoked upon reception of the first block of data. In this case,
 RECEIVE_FRAME is invoked immediately after.

Welzl & Gjessing Expires April 25, 2018 [Page 15]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

50 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 SEND_FRAME (flow-id frame [reliability] [ordered] [bundle] [delack]
 [fragment] [idempotent])

 Sends an application frame. No guarantees are given about the
 preservation of frame boundaries to the peer; if frame boundaries are
 needed, the receiving application at the peer must know about them
 beforehand (or the TAPS system cannot fall back to TCP). Note that
 this call can already be used before a flow is connected. All
 parameters refer to the frame that is being handed over.

 PARAMETERS:

 (!UDP) reliability: this parameter is used to convey a choice of:
 fully reliable, unreliable without congestion control (which is
 guaranteed), unreliable, partially reliable (how to configure:
 TBD, probably using a time value). The latter two choices are not
 guaranteed and may result in full reliability.
 (!UDP) ordered: this boolean parameter lets an application choose
 between ordered message delivery (true) and possibly unordered,
 potentially faster message delivery (false).
 bundle: a boolean that expresses a preference for allowing to bundle
 frames (true) or not (false). No guarantees are given.
 delack: a boolean that, if false, lets an application request that
 the peer would not delay the acknowledgement for this frame.
 fragment: a boolean that expresses a preference for allowing to
 fragment frames (true) or not (false), at the IP level. No
 guarantees are given.
 (!UDP) idempotent: a boolean that expresses whether a frame is
 idempotent (true) or not (false). Idempotent frames may arrive
 multiple times at the receiver (but they will arrive at least
 once). When data is idempotent it can be used by the receiver
 immediately on a connection establishment attempt. Thus, if
 SEND_FRAME is used before connecting, stating that a frame is
 idempotent facilitates transmitting it to the peer application
 particularly early.

 (!UDP) CLOSE (flow-id)

 Closes the flow after all outstanding data is reliably delivered to
 the peer (if reliable data delivery was requested). In case reliable
 or partially reliable data delivery was requested earlier, the peer
 is notified of the CLOSE.

 ABORT (flow-id)

Welzl & Gjessing Expires April 25, 2018 [Page 16]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

51 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 Aborts the flow without delivering outstanding data to the peer. In
 case reliable or partially reliable data delivery was requested
 earlier (!UDP), the peer is notified of the ABORT.

 RECEIVE_FRAME (flow-id buffer)

 This receives a block of data. This block may or may not correspond
 to a sender-side frame, i.e. the receiving application is not
 informed about frame boundaries (this limitation is only needed for
 TAPS systems that want to be able to fall back to TCP). However, if
 the sending application has allowed that frames are not fully
 reliably transferred, or delivered out of order, then such re-
 ordering or unreliability may be reflected per frame in the arriving
 data. Frames will always stay intact - i.e. if an incomplete frame
 is contained at the end of the arriving data block, this frame is
 guaranteed to continue in the next arriving data block.

 PARAMETERS:

 buffer: the buffer where the received data will be stored.

5. Conclusion

 By decoupling applications from transport protocols, a TAPS system
 provides a different abstraction level than the Berkeley sockets
 interface. As with high- vs. low-level programming languages, a
 higher abstraction level allows more freedom for automation below the
 interface, yet it takes some control away from the application
 programmer. This is the design trade-off that a TAPS system
 developer is facing, and this document provides guidance on the
 design of this abstraction level. Some transport features are
 currently rarely offered by APIs, yet they must be offered or they
 can never be used ("functional" transport features). Other transport
 features are offered by the APIs of the protocols covered here, but
 not exposing them in a TAPS API would allow for more freedom to
 automate protocol usage in a TAPS system.

 The minimal set presented in this document is an effort to find a
 middle ground that can be recommended for TAPS systems to implement,
 on the basis of the transport features discussed in [TAPS2]. This
 middle ground eliminates a large number of transport features because
 they do not require application-specific knowledge, but instead rely
 on knowledge about the network or the Operating System. This leaves
 us with an unanswered question about how exactly a TAPS system should
 automate using all of these "automatable" transport features.

Welzl & Gjessing Expires April 25, 2018 [Page 17]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

52 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 In some cases, it may be best to not entirely automate the decision
 making, but leave it up to a system-wide policy. For example, when
 multiple paths are available, a system policy could guide the
 decision on whether to connect via a WiFi or a cellular interface.
 Such high-level guidance could also be provided by application
 developers, e.g. via a primitive that lets applications specify such
 preferences. As long as this kind of information from applications
 is treated as advisory, it will not lead to a permanent protocol
 binding and does therefore not limit the flexibility of a TAPS
 system. Decisions to add such primitives are therefore left open to
 TAPS system designers.

6. Acknowledgements

 The authors would like to thank the participants of the TAPS Working
 Group and the NEAT research project for valuable input to this
 document. We especially thank Michael Tuexen for help with TAPS flow
 connection establishment/teardown and Gorry Fairhurst for his
 suggestions regarding fragmentation and packet sizes. This work has
 received funding from the European Union’s Horizon 2020 research and
 innovation programme under grant agreement No. 644334 (NEAT).

7. IANA Considerations

 XX RFC ED - PLEASE REMOVE THIS SECTION XXX

 This memo includes no request to IANA.

8. Security Considerations

 Authentication, confidentiality protection, and integrity protection
 are identified as transport features by [RFC8095]. As currently
 deployed in the Internet, these features are generally provided by a
 protocol or layer on top of the transport protocol; no current full-
 featured standards-track transport protocol provides all of these
 transport features on its own. Therefore, these transport features
 are not considered in this document, with the exception of native
 authentication capabilities of TCP and SCTP for which the security
 considerations in [RFC5925] and [RFC4895] apply.

9. References

9.1 . Normative References

Welzl & Gjessing Expires April 25, 2018 [Page 18]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

53 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 [RFC8095] Fairhurst, G., Ed., Trammell, B., Ed., and M. Kuehlewind,
 Ed., "Services Provided by IETF Transport Protocols and
 Congestion Control Mechanisms", RFC 8095 ,
 DOI 10.17487/RFC8095, March 2017,
 < https://www.rfc-editor.org/info/rfc8095 >.

 [TAPS2] Welzl, M., Tuexen, M., and N. Khademi, "On the Usage of
 Transport Features Provided by IETF Transport Protocols",
 Internet-draft draft-ietf-taps-transports-usage-08 , August
 2017.

 [TAPS2UDP]
 Fairhurst, G. and T. Jones, "Features of the User Datagram
 Protocol (UDP) and Lightweight UDP (UDP-Lite) Transport
 Protocols", Internet-draft draft-ietf-taps-transports-
 usage-udp-07 , September 2017.

9.2 . Informative References

 [COBS] Cheshire, S. and M. Baker, "Consistent Overhead Byte
 Stuffing", September 1997,
 < http://stuartcheshire.org/papers/COBSforToN.pdf >.

 [I-D.grinnemo-taps-he]
 Grinnemo, K., Brunstrom, A., Hurtig, P., Khademi, N., and
 Z. Bozakov, "Happy Eyeballs for Transport Selection",
 draft-grinnemo-taps-he-03 (work in progress), July 2017.

 [I-D.ietf-tsvwg-rtcweb-qos]
 Jones, P., Dhesikan, S., Jennings, C., and D. Druta, "DSCP
 Packet Markings for WebRTC QoS", draft-ietf-tsvwg-rtcweb-
 qos-18 (work in progress), August 2016.

 [I-D.ietf-tsvwg-sctp-ndata]
 Stewart, R., Tuexen, M., Loreto, S., and R. Seggelmann,
 "Stream Schedulers and User Message Interleaving for the
 Stream Control Transmission Protocol", draft-ietf-tsvwg-
 sctp-ndata-13 (work in progress), September 2017.

 [I-D.pauly-taps-transport-security]
 Pauly, T. and C. Wood, "A Survey of Transport Security
 Protocols", draft-pauly-taps-transport-security-00 (work
 in progress), July 2017.

Welzl & Gjessing Expires April 25, 2018 [Page 19]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

54 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 [I-D.trammell-taps-post-sockets]
 Trammell, B., Perkins, C., Pauly, T., Kuehlewind, M., and
 C. Wood, "Post Sockets, An Abstract Programming Interface
 for the Transport Layer", draft-trammell-taps-post-
 sockets-01 (work in progress), September 2017.

 [LBE-draft]
 Bless, R., "A Lower Effort Per-Hop Behavior (LE PHB)",
 Internet-draft draft-tsvwg-le-phb-02 , June 2017.

 [RFC2914] Floyd, S., "Congestion Control Principles", BCP 41 ,
 RFC 2914 , DOI 10.17487/RFC2914, September 2000,
 < https://www.rfc-editor.org/info/rfc2914 >.

 [RFC4895] Tuexen, M., Stewart, R., Lei, P., and E. Rescorla,
 "Authenticated Chunks for the Stream Control Transmission
 Protocol (SCTP)", RFC 4895 , DOI 10.17487/RFC4895, August
 2007, < https://www.rfc-editor.org/info/rfc4895 >.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987 , DOI 10.17487/RFC4987, August 2007,
 < https://www.rfc-editor.org/info/rfc4987 >.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925 , DOI 10.17487/RFC5925,
 June 2010, < https://www.rfc-editor.org/info/rfc5925 >.

 [RFC6458] Stewart, R., Tuexen, M., Poon, K., Lei, P., and V.
 Yasevich, "Sockets API Extensions for the Stream Control
 Transmission Protocol (SCTP)", RFC 6458 ,
 DOI 10.17487/RFC6458, December 2011,
 < https://www.rfc-editor.org/info/rfc6458 >.

 [RFC6525] Stewart, R., Tuexen, M., and P. Lei, "Stream Control
 Transmission Protocol (SCTP) Stream Reconfiguration",
 RFC 6525 , DOI 10.17487/RFC6525, February 2012,
 < https://www.rfc-editor.org/info/rfc6525 >.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413 , DOI 10.17487/RFC7413, December 2014,
 < https://www.rfc-editor.org/info/rfc7413 >.

 [WWDC2015]
 Lakhera, P. and S. Cheshire, "Your App and Next Generation
 Networks", Apple Worldwide Developers Conference 2015, San
 Francisco, USA, June 2015,
 < https://developer.apple.com/videos/wwdc/2015/?id=719 >.

Welzl & Gjessing Expires April 25, 2018 [Page 20]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

55 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

Appendix A . Deriving the minimal set

 We approach the construction of a minimal set of transport features
 in the following way:

 1. Categorization: the superset of transport features from [TAPS2]
 is presented, and transport features are categorized for later
 reduction.
 2. Reduction: a shorter list of transport features is derived from
 the categorization in the first step. This removes all transport
 features that do not require application-specific knowledge or
 cannot be implemented with TCP. !!!TODO discuss UDP
 3. Discussion: the resulting list shows a number of peculiarities
 that are discussed, to provide a basis for constructing the
 minimal set.
 4. Construction: Based on the reduced set and the discussion of the
 transport features therein, a minimal set is constructed.

 The first three steps as well as the underlying rationale for
 constructing the minimal set are described in this appendix. The
 minimal set itself is described in Section 3 .

A.1 . Step 1: Categorization -- The Superset of Transport Features

 Following [TAPS2], we divide the transport features into two main
 groups as follows:

 1. CONNECTION related transport features
 - ESTABLISHMENT
 - AVAILABILITY
 - MAINTENANCE
 - TERMINATION

 2. DATA Transfer Related transport features
 - Sending Data
 - Receiving Data
 - Errors

 We assume that TAPS applications have no specific requirements that
 need knowledge about the network, e.g. regarding the choice of
 network interface or the end-to-end path. Even with these
 assumptions, there are certain requirements that are strictly kept by
 transport protocols today, and these must also be kept by a TAPS
 system. Some of these requirements relate to transport features that
 we call "Functional".

Welzl & Gjessing Expires April 25, 2018 [Page 21]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

56 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 Functional transport features provide functionality that cannot be
 used without the application knowing about them, or else they violate
 assumptions that might cause the application to fail. For example,
 ordered message delivery is a functional transport feature: it cannot
 be configured without the application knowing about it because the
 application’s assumption could be that messages always arrive in
 order. Failure includes any change of the application behavior that
 is not performance oriented, e.g. security.

 "Change DSCP" and "Disable Nagle algorithm" are examples of transport
 features that we call "Optimizing": if a TAPS system autonomously
 decides to enable or disable them, an application will not fail, but
 a TAPS system may be able to communicate more efficiently if the
 application is in control of this optimizing transport feature.
 These transport features require application-specific knowledge
 (e.g., about delay/bandwidth requirements or the length of future
 data blocks that are to be transmitted).

 The transport features of IETF transport protocols that do not
 require application-specific knowledge and could therefore be
 transparently utilized by a TAPS system are called "Automatable".

 Finally, some transport features are aggregated and/or slightly
 changed in the description below. These transport features are
 marked as "ADDED". The corresponding transport features are
 automatable, and they are listed immediately below the "ADDED"
 transport feature.

 In this description, transport services are presented following the
 nomenclature "CATEGORY.[SUBCATEGORY].SERVICENAME.PROTOCOL",
 equivalent to "pass 2" in [TAPS2]. We also sketch how some of the
 TAPS transport features can be implemented by a TAPS system. For all
 transport features that are categorized as "functional" or
 "optimizing", and for which no matching TCP and/or UDP primitive
 exists in "pass 2" of [TAPS2], a brief discussion on how to fall back
 to TCP and/or UDP is included.

 We designate some transport features as "automatable" on the basis of
 a broader decision that affects multiple transport features:

 o Most transport features that are related to multi-streaming were
 designated as "automatable". This was done because the decision
 on whether to use multi-streaming or not does not depend on
 application-specific knowledge. This means that a connection that
 is exhibited to an application could be implemented by using a
 single stream of an SCTP association instead of mapping it to a
 complete SCTP association or TCP connection. This could be
 achieved by using more than one stream when an SCTP association is

Welzl & Gjessing Expires April 25, 2018 [Page 22]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

57 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 first established (CONNECT.SCTP parameter "outbound stream
 count"), maintaining an internal stream number, and using this
 stream number when sending data (SEND.SCTP parameter "stream
 number"). Closing or aborting a connection could then simply free
 the stream number for future use. This is discussed further in
 Appendix A.3.2 .
 o All transport features that are related to using multiple paths or
 the choice of the network interface were designated as
 "automatable". Choosing a path or an interface does not depend on
 application-specific knowledge. For example, "Listen" could
 always listen on all available interfaces and "Connect" could use
 the default interface for the destination IP address.

A.1.1 . CONNECTION Related Transport Features

 ESTABLISHMENT:

 o Connect
 Protocols: TCP, SCTP, UDP(-Lite)
 Functional because the notion of a connection is often reflected
 in applications as an expectation to be able to communicate after
 a "Connect" succeeded, with a communication sequence relating to
 this transport feature that is defined by the application
 protocol.
 Implementation: via CONNECT.TCP, CONNECT.SCTP or CONNECT.UDP(-
 Lite).

 o Specify which IP Options must always be used
 Protocols: TCP, UDP(-Lite)
 Automatable because IP Options relate to knowledge about the
 network, not the application.

 o Request multiple streams
 Protocols: SCTP
 Automatable because using multi-streaming does not require
 application-specific knowledge.
 Implementation: see Appendix A.3.2 .

 o Limit the number of inbound streams
 Protocols: SCTP
 Automatable because using multi-streaming does not require
 application-specific knowledge.
 Implementation: see Appendix A.3.2 .

Welzl & Gjessing Expires April 25, 2018 [Page 23]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

58 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 o Specify number of attempts and/or timeout for the first
 establishment message
 Protocols: TCP, SCTP
 Functional because this is closely related to potentially assumed
 reliable data delivery for data that is sent before or during
 connection establishment.
 Implementation: Using a parameter of CONNECT.TCP and CONNECT.SCTP.
 Fall-back to UDP: Do nothing (this is irrelevant in case of UDP
 because there, reliable data delivery is not assumed).

 o Obtain multiple sockets
 Protocols: SCTP
 Automatable because the usage of multiple paths to communicate to
 the same end host relates to knowledge about the network, not the
 application.

 o Disable MPTCP
 Protocols: MPTCP
 Automatable because the usage of multiple paths to communicate to
 the same end host relates to knowledge about the network, not the
 application.
 Implementation: via a boolean parameter in CONNECT.MPTCP.

 o Configure authentication
 Protocols: TCP, SCTP
 Functional because this has a direct influence on security.
 Implementation: via parameters in CONNECT.TCP and CONNECT.SCTP.
 Fall-back to TCP: With TCP, this allows to configure Master Key
 Tuples (MKTs) to authenticate complete segments (including the TCP
 IPv4 pseudoheader, TCP header, and TCP data). With SCTP, this
 allows to specify which chunk types must always be authenticated.
 Authenticating only certain chunk types creates a reduced level of
 security that is not supported by TCP; to be compatible, this
 should therefore only allow to authenticate all chunk types. Key
 material must be provided in a way that is compatible with both
 [RFC4895] and [RFC5925].
 Fall-back to UDP: Not possible.

 o Indicate (and/or obtain upon completion) an Adaptation Layer via
 an adaptation code point
 Protocols: SCTP

Welzl & Gjessing Expires April 25, 2018 [Page 24]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

59 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 Functional because it allows to send extra data for the sake of
 identifying an adaptation layer, which by itself is application-
 specific.
 Implementation: via a parameter in CONNECT.SCTP.
 Fall-back to TCP: not possible.
 Fall-back to UDP: not possible.

 o Request to negotiate interleaving of user messages
 Protocols: SCTP
 Automatable because it requires using multiple streams, but
 requesting multiple streams in the CONNECTION.ESTABLISHMENT
 category is automatable.
 Implementation: via a parameter in CONNECT.SCTP.

 o Hand over a message to reliably transfer (possibly multiple times)
 before connection establishment
 Protocols: TCP
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Implementation: via a parameter in CONNECT.TCP.
 Fall-back to UDP: not possible.

 o Hand over a message to reliably transfer during connection
 establishment
 Protocols: SCTP
 Functional because this can only work if the message is limited in
 size, making it closely tied to properties of the data that an
 application sends or expects to receive.
 Implementation: via a parameter in CONNECT.SCTP.
 Fall-back to UDP: not possible.

 o Enable UDP encapsulation with a specified remote UDP port number
 Protocols: SCTP
 Automatable because UDP encapsulation relates to knowledge about
 the network, not the application.

 AVAILABILITY:

 o Listen

Welzl & Gjessing Expires April 25, 2018 [Page 25]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

60 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 Protocols: TCP, SCTP, UDP(-Lite)
 Functional because the notion of accepting connection requests is
 often reflected in applications as an expectation to be able to
 communicate after a "Listen" succeeded, with a communication
 sequence relating to this transport feature that is defined by the
 application protocol.
 ADDED. This differs from the 3 automatable transport features
 below in that it leaves the choice of interfaces for listening
 open.
 Implementation: by listening on all interfaces via LISTEN.TCP (not
 providing a local IP address) or LISTEN.SCTP (providing SCTP port
 number / address pairs for all local IP addresses). LISTEN.UDP(-
 Lite) supports both methods.

 o Listen, 1 specified local interface
 Protocols: TCP, SCTP, UDP(-Lite)
 Automatable because decisions about local interfaces relate to
 knowledge about the network and the Operating System, not the
 application.

 o Listen, N specified local interfaces
 Protocols: SCTP
 Automatable because decisions about local interfaces relate to
 knowledge about the network and the Operating System, not the
 application.

 o Listen, all local interfaces
 Protocols: TCP, SCTP, UDP(-Lite)
 Automatable because decisions about local interfaces relate to
 knowledge about the network and the Operating System, not the
 application.

 o Specify which IP Options must always be used
 Protocols: TCP, UDP(-Lite)
 Automatable because IP Options relate to knowledge about the
 network, not the application.

 o Disable MPTCP
 Protocols: MPTCP

Welzl & Gjessing Expires April 25, 2018 [Page 26]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

61 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 Automatable because the usage of multiple paths to communicate to
 the same end host relates to knowledge about the network, not the
 application.

 o Configure authentication
 Protocols: TCP, SCTP
 Functional because this has a direct influence on security.
 Implementation: via parameters in LISTEN.TCP and LISTEN.SCTP.
 Fall-back to TCP: With TCP, this allows to configure Master Key
 Tuples (MKTs) to authenticate complete segments (including the TCP
 IPv4 pseudoheader, TCP header, and TCP data). With SCTP, this
 allows to specify which chunk types must always be authenticated.
 Authenticating only certain chunk types creates a reduced level of
 security that is not supported by TCP; to be compatible, this
 should therefore only allow to authenticate all chunk types. Key
 material must be provided in a way that is compatible with both
 [RFC4895] and [RFC5925].
 Fall-back to UDP: not possible.

 o Obtain requested number of streams
 Protocols: SCTP
 Automatable because using multi-streaming does not require
 application-specific knowledge.
 Implementation: see Appendix A.3.2 .

 o Limit the number of inbound streams
 Protocols: SCTP
 Automatable because using multi-streaming does not require
 application-specific knowledge.
 Implementation: see Appendix A.3.2 .

 o Indicate (and/or obtain upon completion) an Adaptation Layer via
 an adaptation code point
 Protocols: SCTP
 Functional because it allows to send extra data for the sake of
 identifying an adaptation layer, which by itself is application-
 specific.
 Implementation: via a parameter in LISTEN.SCTP.
 Fall-back to TCP: not possible.
 Fall-back to UDP: not possible.

 o Request to negotiate interleaving of user messages

Welzl & Gjessing Expires April 25, 2018 [Page 27]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

62 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 Protocols: SCTP
 Automatable because it requires using multiple streams, but
 requesting multiple streams in the CONNECTION.ESTABLISHMENT
 category is automatable.
 Implementation: via a parameter in LISTEN.SCTP.

 MAINTENANCE:

 o Change timeout for aborting connection (using retransmit limit or
 time value)
 Protocols: TCP, SCTP
 Functional because this is closely related to potentially assumed
 reliable data delivery.
 Implementation: via CHANGE-TIMEOUT.TCP or CHANGE-TIMEOUT.SCTP.
 Fall-back to UDP: not possible (UDP is unreliable and there is no
 connection timeout).

 o Suggest timeout to the peer
 Protocols: TCP
 Functional because this is closely related to potentially assumed
 reliable data delivery.
 Implementation: via CHANGE-TIMEOUT.TCP.
 Fall-back to UDP: not possible (UDP is unreliable and there is no
 connection timeout).

 o Disable Nagle algorithm
 Protocols: TCP, SCTP
 Optimizing because this decision depends on knowledge about the
 size of future data blocks and the delay between them.
 Implementation: via DISABLE-NAGLE.TCP and DISABLE-NAGLE.SCTP.
 Fall-back to UDP: do nothing (UDP does not implement the Nagle
 algorithm).

 o Request an immediate heartbeat, returning success/failure
 Protocols: SCTP
 Automatable because this informs about network-specific knowledge.

Welzl & Gjessing Expires April 25, 2018 [Page 28]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

63 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 o Notification of Excessive Retransmissions (early warning below
 abortion threshold)
 Protocols: TCP
 Optimizing because it is an early warning to the application,
 informing it of an impending functional event.
 Implementation: via ERROR.TCP.
 Fall-back to UDP: do nothing (there is no abortion threshold).

 o Add path
 Protocols: MPTCP, SCTP
 MPTCP Parameters: source-IP; source-Port; destination-IP;
 destination-Port
 SCTP Parameters: local IP address
 Automatable because the usage of multiple paths to communicate to
 the same end host relates to knowledge about the network, not the
 application.

 o Remove path
 Protocols: MPTCP, SCTP
 MPTCP Parameters: source-IP; source-Port; destination-IP;
 destination-Port
 SCTP Parameters: local IP address
 Automatable because the usage of multiple paths to communicate to
 the same end host relates to knowledge about the network, not the
 application.

 o Set primary path
 Protocols: SCTP
 Automatable because the usage of multiple paths to communicate to
 the same end host relates to knowledge about the network, not the
 application.

 o Suggest primary path to the peer
 Protocols: SCTP
 Automatable because the usage of multiple paths to communicate to
 the same end host relates to knowledge about the network, not the
 application.

Welzl & Gjessing Expires April 25, 2018 [Page 29]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

64 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 o Configure Path Switchover
 Protocols: SCTP
 Automatable because the usage of multiple paths to communicate to
 the same end host relates to knowledge about the network, not the
 application.

 o Obtain status (query or notification)
 Protocols: SCTP, MPTCP
 SCTP parameters: association connection state; destination
 transport address list; destination transport address reachability
 states; current local and peer receiver window size; current local
 congestion window sizes; number of unacknowledged DATA chunks;
 number of DATA chunks pending receipt; primary path; most recent
 SRTT on primary path; RTO on primary path; SRTT and RTO on other
 destination addresses; MTU per path; interleaving supported yes/no
 MPTCP parameters: subflow-list (identified by source-IP; source-
 Port; destination-IP; destination-Port)
 Automatable because these parameters relate to knowledge about the
 network, not the application.

 o Specify DSCP field
 Protocols: TCP, SCTP, UDP(-Lite)
 Optimizing because choosing a suitable DSCP value requires
 application-specific knowledge.
 Implementation: via SET_DSCP.TCP / SET_DSCP.SCTP / SET_DSCP.UDP(-
 Lite)

 o Notification of ICMP error message arrival
 Protocols: TCP, UDP(-Lite)
 Optimizing because these messages can inform about success or
 failure of functional transport features (e.g., host unreachable
 relates to "Connect")
 Implementation: via ERROR.TCP or ERROR.UDP(-Lite).

 o Obtain information about interleaving support
 Protocols: SCTP
 Automatable because it requires using multiple streams, but
 requesting multiple streams in the CONNECTION.ESTABLISHMENT
 category is automatable.
 Implementation: via a parameter in GETINTERL.SCTP.

Welzl & Gjessing Expires April 25, 2018 [Page 30]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

65 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 o Change authentication parameters
 Protocols: TCP, SCTP
 Functional because this has a direct influence on security.
 Implementation: via SET_AUTH.TCP and SET_AUTH.SCTP.
 Fall-back to TCP: With SCTP, this allows to adjust key_id, key,
 and hmac_id. With TCP, this allows to change the preferred
 outgoing MKT (current_key) and the preferred incoming MKT
 (rnext_key), respectively, for a segment that is sent on the
 connection. Key material must be provided in a way that is
 compatible with both [RFC4895] and [RFC5925].
 Fall-back to UDP: not possible.

 o Obtain authentication information
 Protocols: SCTP
 Functional because authentication decisions may have been made by
 the peer, and this has an influence on the necessary application-
 level measures to provide a certain level of security.
 Implementation: via GETAUTH.SCTP.
 Fall-back to TCP: With SCTP, this allows to obtain key_id and a
 chunk list. With TCP, this allows to obtain current_key and
 rnext_key from a previously received segment. Key material must
 be provided in a way that is compatible with both [RFC4895] and
 [RFC5925].
 Fall-back to UDP: not possible.

 o Reset Stream
 Protocols: SCTP
 Automatable because using multi-streaming does not require
 application-specific knowledge.
 Implementation: see Appendix A.3.2 .

 o Notification of Stream Reset
 Protocols: STCP
 Automatable because using multi-streaming does not require
 application-specific knowledge.
 Implementation: see Appendix A.3.2 .

 o Reset Association
 Protocols: SCTP
 Automatable because deciding to reset an association does not
 require application-specific knowledge.
 Implementation: via RESETASSOC.SCTP.

Welzl & Gjessing Expires April 25, 2018 [Page 31]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

66 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 o Notification of Association Reset
 Protocols: STCP
 Automatable because this notification does not relate to
 application-specific knowledge.

 o Add Streams
 Protocols: SCTP
 Automatable because using multi-streaming does not require
 application-specific knowledge.
 Implementation: see Appendix A.3.2 .

 o Notification of Added Stream
 Protocols: STCP
 Automatable because using multi-streaming does not require
 application-specific knowledge.
 Implementation: see Appendix A.3.2 .

 o Choose a scheduler to operate between streams of an association
 Protocols: SCTP
 Optimizing because the scheduling decision requires application-
 specific knowledge. However, if a TAPS system would not use this,
 or wrongly configure it on its own, this would only affect the
 performance of data transfers; the outcome would still be correct
 within the "best effort" service model.
 Implementation: using SETSTREAMSCHEDULER.SCTP.
 Fall-back to TCP: do nothing.
 Fall-back to UDP: do nothing.

 o Configure priority or weight for a scheduler
 Protocols: SCTP
 Optimizing because the priority or weight requires application-
 specific knowledge. However, if a TAPS system would not use this,
 or wrongly configure it on its own, this would only affect the
 performance of data transfers; the outcome would still be correct
 within the "best effort" service model.
 Implementation: using CONFIGURESTREAMSCHEDULER.SCTP.
 Fall-back to TCP: do nothing.
 Fall-back to UDP: do nothing.

 o Configure send buffer size

Welzl & Gjessing Expires April 25, 2018 [Page 32]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

67 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 Protocols: SCTP
 Automatable because this decision relates to knowledge about the
 network and the Operating System, not the application (see also
 the discussion in Appendix A.3.4).

 o Configure receive buffer (and rwnd) size
 Protocols: SCTP
 Automatable because this decision relates to knowledge about the
 network and the Operating System, not the application.

 o Configure message fragmentation
 Protocols: SCTP
 Automatable because fragmentation relates to knowledge about the
 network and the Operating System, not the application.
 Implementation: by always enabling it with
 CONFIG_FRAGMENTATION.SCTP and auto-setting the fragmentation size
 based on network or Operating System conditions.

 o Configure PMTUD
 Protocols: SCTP
 Automatable because Path MTU Discovery relates to knowledge about
 the network, not the application.

 o Configure delayed SACK timer
 Protocols: SCTP
 Automatable because the receiver-side decision to delay sending
 SACKs relates to knowledge about the network, not the application
 (it can be relevant for a sending application to request not to
 delay the SACK of a message, but this is a different transport
 feature).

 o Set Cookie life value
 Protocols: SCTP
 Functional because it relates to security (possibly weakened by
 keeping a cookie very long) versus the time between connection
 establishment attempts. Knowledge about both issues can be
 application-specific.

Welzl & Gjessing Expires April 25, 2018 [Page 33]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

68 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 Fall-back to TCP: the closest specified TCP functionality is the
 cookie in TCP Fast Open; for this, [RFC7413] states that the
 server "can expire the cookie at any time to enhance security" and
 section 4.1.2 describes an example implementation where updating
 the key on the server side causes the cookie to expire.
 Alternatively, for implementations that do not support TCP Fast
 Open, this transport feature could also affect the validity of SYN
 cookies (see Section 3.6 of [RFC4987]).
 Fall-back to UDP: do nothing.

 o Set maximum burst
 Protocols: SCTP
 Automatable because it relates to knowledge about the network, not
 the application.

 o Configure size where messages are broken up for partial delivery
 Protocols: SCTP
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Fall-back to TCP: not possible.
 Fall-back to UDP: not possible.

 o Disable checksum when sending
 Protocols: UDP
 Functional because application-specific knowledge is necessary to
 decide whether it can be acceptable to lose data integrity.
 Implementation: via SET_CHECKSUM_ENABLED.UDP.
 Fall-back to TCP: do nothing.

 o Disable checksum requirement when receiving
 Protocols: UDP
 Functional because application-specific knowledge is necessary to
 decide whether it can be acceptable to lose data integrity.
 Implementation: via SET_CHECKSUM_REQUIRED.UDP.
 Fall-back to TCP: do nothing.

 o Specify checksum coverage used by the sender
 Protocols: UDP-Lite

Welzl & Gjessing Expires April 25, 2018 [Page 34]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

69 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 Functional because application-specific knowledge is necessary to
 decide for which parts of the data it can be acceptable to lose
 data integrity.
 Implementation: via SET_CHECKSUM_COVERAGE.UDP-Lite.
 Fall-back to TCP: do nothing.

 o Specify minimum checksum coverage required by receiver
 Protocols: UDP-Lite
 Functional because application-specific knowledge is necessary to
 decide for which parts of the data it can be acceptable to lose
 data integrity.
 Implementation: via SET_MIN_CHECKSUM_COVERAGE.UDP-Lite.
 Fall-back to TCP: do nothing.

 o Specify DF field
 Protocols: UDP(-Lite)
 Optimizing because the DF field can be used to carry out Path MTU
 Discovery, which can lead an application to choose message sizes
 that can be transmitted more efficiently.
 Implementation: via MAINTENANCE.SET_DF.UDP(-Lite) and
 SEND_FAILURE.UDP(-Lite).
 Fall-back to TCP: do nothing. With TCP the sender is not in
 control of transport message sizes, making this functionality
 irrelevant.

 o Get max. transport-message size that may be sent using a non-
 fragmented IP packet from the configured interface
 Protocols: UDP(-Lite)
 Optimizing because this can lead an application to choose message
 sizes that can be transmitted more efficiently.
 Fall-back to TCP: do nothing: this information is not available
 with TCP.

 o Get max. transport-message size that may be received from the
 configured interface
 Protocols: UDP(-Lite)
 Optimizing because this can, for example, influence an
 application’s memory management.
 Fall-back to TCP: do nothing: this information is not available
 with TCP.

Welzl & Gjessing Expires April 25, 2018 [Page 35]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

70 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 o Specify TTL/Hop count field
 Protocols: UDP(-Lite)
 Automatable because a TAPS system can use a large enough system
 default to avoid communication failures. Allowing an application
 to configure it differently can produce notifications of ICMP
 error message arrivals that yield information which only relates
 to knowledge about the network, not the application.

 o Obtain TTL/Hop count field
 Protocols: UDP(-Lite)
 Automatable because the TTL/Hop count field relates to knowledge
 about the network, not the application.

 o Specify ECN field
 Protocols: UDP(-Lite)
 Automatable because the ECN field relates to knowledge about the
 network, not the application.

 o Obtain ECN field
 Protocols: UDP(-Lite)
 Optimizing because this information can be used by an application
 to better carry out congestion control (this is relevant when
 choosing a data transmission transport service that does not
 already do congestion control).
 Fall-back to TCP: do nothing: this information is not available
 with TCP.

 o Specify IP Options
 Protocols: UDP(-Lite)
 Automatable because IP Options relate to knowledge about the
 network, not the application.

 o Obtain IP Options
 Protocols: UDP(-Lite)
 Automatable because IP Options relate to knowledge about the
 network, not the application.

Welzl & Gjessing Expires April 25, 2018 [Page 36]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

71 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 o Enable and configure a "Low Extra Delay Background Transfer"
 Protocols: A protocol implementing the LEDBAT congestion control
 mechanism
 Optimizing because whether this service is appropriate or not
 depends on application-specific knowledge. However, wrongly using
 this will only affect the speed of data transfers (albeit
 including other transfers that may compete with the TAPS transfer
 in the network), so it is still correct within the "best effort"
 service model.
 Implementation: via CONFIGURE.LEDBAT and/or SET_DSCP.TCP /
 SET_DSCP.SCTP / SET_DSCP.UDP(-Lite) [LBE-draft].
 Fall-back to TCP: do nothing.
 Fall-back to UDP: do nothing.

 TERMINATION:

 o Close after reliably delivering all remaining data, causing an
 event informing the application on the other side
 Protocols: TCP, SCTP
 Functional because the notion of a connection is often reflected
 in applications as an expectation to have all outstanding data
 delivered and no longer be able to communicate after a "Close"
 succeeded, with a communication sequence relating to this
 transport feature that is defined by the application protocol.
 Implementation: via CLOSE.TCP and CLOSE.SCTP.
 Fall-back to UDP: not possible.

 o Abort without delivering remaining data, causing an event
 informing the application on the other side
 Protocols: TCP, SCTP
 Functional because the notion of a connection is often reflected
 in applications as an expectation to potentially not have all
 outstanding data delivered and no longer be able to communicate
 after an "Abort" succeeded. On both sides of a connection, an
 application protocol may define a communication sequence relating
 to this transport feature.
 Implementation: via ABORT.TCP and ABORT.SCTP.
 Fall-back to UDP: not possible.

 o Abort without delivering remaining data, not causing an event
 informing the application on the other side

Welzl & Gjessing Expires April 25, 2018 [Page 37]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

72 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 Protocols: UDP(-Lite)
 Functional because the notion of a connection is often reflected
 in applications as an expectation to potentially not have all
 outstanding data delivered and no longer be able to communicate
 after an "Abort" succeeded. On both sides of a connection, an
 application protocol may define a communication sequence relating
 to this transport feature.
 Implementation: via ABORT.UDP(-Lite).
 Fall-back to TCP: stop using the connection, wait for a timeout.

 o Timeout event when data could not be delivered for too long
 Protocols: TCP, SCTP
 Functional because this notifies that potentially assumed reliable
 data delivery is no longer provided.
 Implementation: via TIMEOUT.TCP and TIMEOUT.SCTP.
 Fall-back to UDP: do nothing: this event will not occur with UDP.

A.1.2 . DATA Transfer Related Transport Features

A.1.2.1 . Sending Data

 o Reliably transfer data, with congestion control
 Protocols: TCP, SCTP
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Implementation: via SEND.TCP and SEND.SCTP.
 Fall-back to UDP: not possible.

 o Reliably transfer a message, with congestion control
 Protocols: SCTP
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Implementation: via SEND.SCTP.
 Fall-back to TCP: via SEND.TCP. With SEND.TCP, messages will not
 be identifiable by the receiver.
 Fall-back to UDP: not possible.

 o Unreliably transfer a message
 Protocols: SCTP, UDP(-Lite)

Welzl & Gjessing Expires April 25, 2018 [Page 38]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

73 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 Optimizing because only applications know about the time
 criticality of their communication, and reliably transfering a
 message is never incorrect for the receiver of a potentially
 unreliable data transfer, it is just slower.
 ADDED. This differs from the 2 automatable transport features
 below in that it leaves the choice of congestion control open.
 Implementation: via SEND.SCTP or SEND.UDP(-Lite).
 Fall-back to TCP: use SEND.TCP. With SEND.TCP, messages will be
 sent reliably, and they will not be identifiable by the receiver.

 o Unreliably transfer a message, with congestion control
 Protocols: SCTP
 Automatable because congestion control relates to knowledge about
 the network, not the application.

 o Unreliably transfer a message, without congestion control
 Protocols: UDP(-Lite)
 Automatable because congestion control relates to knowledge about
 the network, not the application.

 o Configurable Message Reliability
 Protocols: SCTP
 Optimizing because only applications know about the time
 criticality of their communication, and reliably transfering a
 message is never incorrect for the receiver of a potentially
 unreliable data transfer, it is just slower.
 Implementation: via SEND.SCTP.
 Fall-back to TCP: By using SEND.TCP and ignoring this
 configuration: based on the assumption of the best-effort service
 model, unnecessarily delivering data does not violate application
 expectations. Moreover, it is not possible to associate the
 requested reliability to a "message" in TCP anyway.
 Fall-back to UDP: not possible.

 o Choice of stream
 Protocols: SCTP
 Automatable because it requires using multiple streams, but
 requesting multiple streams in the CONNECTION.ESTABLISHMENT
 category is automatable. Implementation: see Appendix A.3.2 .

Welzl & Gjessing Expires April 25, 2018 [Page 39]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

74 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 o Choice of path (destination address)
 Protocols: SCTP
 Automatable because it requires using multiple sockets, but
 obtaining multiple sockets in the CONNECTION.ESTABLISHMENT
 category is automatable.

 o Ordered message delivery (potentially slower than unordered)
 Protocols: SCTP
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Implementation: via SEND.SCTP.
 Fall-back to TCP: By using SEND.TCP. With SEND.TCP, messages will
 not be identifiable by the receiver.
 Fall-back to UDP: not possible.

 o Unordered message delivery (potentially faster than ordered)
 Protocols: SCTP, UDP(-Lite)
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Implementation: via SEND.SCTP.
 Fall-back to TCP: By using SEND.TCP and always sending data
 ordered: based on the assumption of the best-effort service model,
 ordered delivery may just be slower and does not violate
 application expectations. Moreover, it is not possible to
 associate the requested delivery order to a "message" in TCP
 anyway.

 o Request not to bundle messages
 Protocols: SCTP
 Optimizing because this decision depends on knowledge about the
 size of future data blocks and the delay between them.
 Implementation: via SEND.SCTP.
 Fall-back to TCP: By using SEND.TCP and DISABLE-NAGLE.TCP to
 disable the Nagle algorithm when the request is made and enable it
 again when the request is no longer made. Note that this is not
 fully equivalent because it relates to the time of issuing the
 request rather than a specific message.
 Fall-back to UDP: do nothing (UDP never bundles messages).

Welzl & Gjessing Expires April 25, 2018 [Page 40]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

75 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 o Specifying a "payload protocol-id" (handed over as such by the
 receiver)
 Protocols: SCTP
 Functional because it allows to send extra application data with
 every message, for the sake of identification of data, which by
 itself is application-specific.
 Implementation: SEND.SCTP.
 Fall-back to TCP: not possible.
 Fall-back to UDP: not possible.

 o Specifying a key id to be used to authenticate a message
 Protocols: SCTP
 Functional because this has a direct influence on security.
 Implementation: via a parameter in SEND.SCTP.
 Fall-back to TCP: This could be emulated by using SET_AUTH.TCP
 before and after the message is sent. Note that this is not fully
 equivalent because it relates to the time of issuing the request
 rather than a specific message.
 Fall-back to UDP: not possible.

 o Request not to delay the acknowledgement (SACK) of a message
 Protocols: SCTP
 Optimizing because only an application knows for which message it
 wants to quickly be informed about success / failure of its
 delivery.
 Fall-back to TCP: do nothing.
 Fall-back to UDP: do nothing.

A.1.2.2 . Receiving Data

 o Receive data (with no message delimiting)
 Protocols: TCP
 Functional because a TAPS system must be able to send and receive
 data.
 Implementation: via RECEIVE.TCP.
 Fall-back to UDP: do nothing (hand over a message, let the
 application ignore frame boundaries).

 o Receive a message

Welzl & Gjessing Expires April 25, 2018 [Page 41]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

76 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 Protocols: SCTP, UDP(-Lite)
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Implementation: via RECEIVE.SCTP and RECEIVE.UDP(-Lite).
 Fall-back to TCP: not possible.

 o Choice of stream to receive from
 Protocols: SCTP
 Automatable because it requires using multiple streams, but
 requesting multiple streams in the CONNECTION.ESTABLISHMENT
 category is automatable.
 Implementation: see Appendix A.3.2 .

 o Information about partial message arrival
 Protocols: SCTP
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Implementation: via RECEIVE.SCTP.
 Fall-back to TCP: do nothing: this information is not available
 with TCP.
 Fall-back to UDP: do nothing: this information is not available
 with UDP.

A.1.2.3 . Errors

 This section describes sending failures that are associated with a
 specific call to in the "Sending Data" category (Appendix A.1.2.1).

 o Notification of send failures
 Protocols: SCTP, UDP(-Lite)
 Functional because this notifies that potentially assumed reliable
 data delivery is no longer provided.
 ADDED. This differs from the 2 automatable transport features
 below in that it does not distinugish between unsent and
 unacknowledged messages.
 Implementation: via SENDFAILURE-EVENT.SCTP and SEND_FAILURE.UDP(-
 Lite).
 Fall-back to TCP: do nothing: this notification is not available
 and will therefore not occur with TCP.

Welzl & Gjessing Expires April 25, 2018 [Page 42]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

77 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 o Notification of an unsent (part of a) message
 Protocols: SCTP, UDP(-Lite)
 Automatable because the distinction between unsent and
 unacknowledged is network-specific.

 o Notification of an unacknowledged (part of a) message
 Protocols: SCTP
 Automatable because the distinction between unsent and
 unacknowledged is network-specific.

 o Notification that the stack has no more user data to send
 Protocols: SCTP
 Optimizing because reacting to this notification requires the
 application to be involved, and ensuring that the stack does not
 run dry of data (for too long) can improve performance.
 Fall-back to TCP: do nothing. See also the discussion in
 Appendix A.3.4 .
 Fall-back to UDP: do nothing. This notification is not available
 and will therefore not occur with UDP.

 o Notification to a receiver that a partial message delivery has
 been aborted
 Protocols: SCTP
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Fall-back to TCP: do nothing. This notification is not available
 and will therefore not occur with TCP.
 Fall-back to UDP: do nothing. This notification is not available
 and will therefore not occur with UDP.

A.2 . Step 2: Reduction -- The Reduced Set of Transport Features

 By hiding automatable transport features from the application, a TAPS
 system can gain opportunities to automate the usage of network-
 related functionality. This can facilitate using the TAPS system for
 the application programmer and it allows for optimizations that may
 not be possible for an application. For instance, system-wide
 configurations regarding the usage of multiple interfaces can better
 be exploited if the choice of the interface is not entirely up to the

Welzl & Gjessing Expires April 25, 2018 [Page 43]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

78 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 application. Therefore, since they are not strictly necessary to
 expose in a TAPS system, we do not include automatable transport
 features in the reduced set of transport features. This leaves us
 with only the transport features that are either optimizing or
 functional.

 A TAPS system should be able to fall back to TCP or UDP if
 alternative transport protocols are found not to work. For many
 transport features, this is possible -- often by simply not doing
 anything. For some transport features, however, it was identified
 that neither a fall-back to TCP nor a fall-back to UDP is possible:
 in these cases, even not doing anything would incur semantically
 incorrect behavior. Whenever an application would make use of one of
 these transport features, this would eliminate the possibility to use
 TCP or UDP. Thus, we only keep the functional and optimizing
 transport features for which a fall-back to either TCP or UDP is
 possible in our reduced set.

 In the following list, we precede a transport feature with "T:" if a
 fall-back to TCP is possible, "U:" if a fall-back to UDP is possible,
 and "TU:" if a fall-back to either TCP or UDP is possible.

A.2.1 . CONNECTION Related Transport Features

 ESTABLISHMENT:

 o T,U: Connect
 o T,U: Specify number of attempts and/or timeout for the first
 establishment message
 o T: Configure authentication
 o T: Hand over a message to reliably transfer (possibly multiple
 times) before connection establishment
 o T: Hand over a message to reliably transfer during connection
 establishment

 AVAILABILITY:

 o T,U: Listen
 o T: Configure authentication

 MAINTENANCE:

 o T: Change timeout for aborting connection (using retransmit limit
 or time value)
 o T: Suggest timeout to the peer
 o T,U: Disable Nagle algorithm
 o T,U: Notification of Excessive Retransmissions (early warning
 below abortion threshold)

Welzl & Gjessing Expires April 25, 2018 [Page 44]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

79 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 o T,U: Specify DSCP field
 o T,U: Notification of ICMP error message arrival
 o T: Change authentication parameters
 o T: Obtain authentication information
 o T,U: Set Cookie life value
 o T,U: Choose a scheduler to operate between streams of an
 association
 o T,U: Configure priority or weight for a scheduler
 o T,U: Disable checksum when sending
 o T,U: Disable checksum requirement when receiving
 o T,U: Specify checksum coverage used by the sender
 o T,U: Specify minimum checksum coverage required by receiver
 o T,U: Specify DF field
 o T,U: Get max. transport-message size that may be sent using a non-
 fragmented IP packet from the configured interface
 o T,U: Get max. transport-message size that may be received from the
 configured interface
 o T,U: Obtain ECN field
 o T,U: Enable and configure a "Low Extra Delay Background Transfer"

 TERMINATION:

 o T: Close after reliably delivering all remaining data, causing an
 event informing the application on the other side
 o T: Abort without delivering remaining data, causing an event
 informing the application on the other side
 o T,U: Abort without delivering remaining data, not causing an event
 informing the application on the other side
 o T,U: Timeout event when data could not be delivered for too long

A.2.2 . DATA Transfer Related Transport Features

A.2.2.1 . Sending Data

 o T: Reliably transfer data, with congestion control
 o T: Reliably transfer a message, with congestion control
 o T,U: Unreliably transfer a message
 o T: Configurable Message Reliability
 o T: Ordered message delivery (potentially slower than unordered)
 o T,U: Unordered message delivery (potentially faster than ordered)
 o T,U: Request not to bundle messages
 o T: Specifying a key id to be used to authenticate a message
 o T,U: Request not to delay the acknowledgement (SACK) of a message

Welzl & Gjessing Expires April 25, 2018 [Page 45]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

80 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

A.2.2.2 . Receiving Data

 o T,U: Receive data (with no message delimiting)
 o U: Receive a message
 o T,U: Information about partial message arrival

A.2.2.3 . Errors

 This section describes sending failures that are associated with a
 specific call to in the "Sending Data" category (Appendix A.1.2.1).

 o T,U: Notification of send failures
 o T,U: Notification that the stack has no more user data to send
 o T,U: Notification to a receiver that a partial message delivery
 has been aborted

A.3 . Step 3: Discussion

 The reduced set in the previous section exhibits a number of
 peculiarities, which we will discuss in the following. This section
 focuses on TCP because, with the exception of one particular
 transport feature ("Receive a message" -- we will discuss this in
 Appendix A.3.1), the list shows that UDP is strictly a subset of TCP.
 We can first try to understand how to build a TAPS system that is
 able to fall back to TCP, and then narrow down the result further to
 allow that the system can always fall back to either TCP or UDP
 (which effectively means removing everything related to reliability,
 ordering, authentication and closing/aborting with a notification to
 the peer).

 Note that, because the functional transport features of UDP are --
 with the exception of "Receive a message" -- a subset of TCP, TCP can
 be used as a fall-back for UDP whenever an application does not need
 message delimiting (e.g., because the application-layer protocol
 already does it). This has been recognized by many applications that
 already do this in practice, by trying to communicate with UDP at
 first, and falling back to TCP in case of a connection failure.

A.3.1 . Sending Messages, Receiving Bytes

 When considering to fall back to TCP, there are several transport
 features related to sending, but only a single transport feature
 related to receiving: "Receive data (with no message delimiting)"
 (and, strangely, "information about partial message arrival").
 Notably, the transport feature "Receive a message" is also the only
 non-automatable transport feature of UDP(-Lite) for which no fall-
 back to TCP is possible.

Welzl & Gjessing Expires April 25, 2018 [Page 46]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

81 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 To support these TCP receiver semantics, we define an "Application-
 Framed Bytestream" (AFra-Bytestream). AFra-Bytestreams allow senders
 to operate on messages while minimizing changes to the TCP socket
 API. In particular, nothing changes on the receiver side - data can
 be accepted via a normal TCP socket.

 In an AFra-Bytestream, the sending application can optionally inform
 the transport about frame boundaries and required properties per
 frame (configurable order and reliability, or embedding a request not
 to delay the acknowledgement of a frame). Whenever the sending
 application specifies per-frame properties that relax the notion of
 reliable in-order delivery of bytes, it must assume that the
 receiving application is 1) able to determine frame boundaries,
 provided that frames are always kept intact, and 2) able to accept
 these relaxed per-frame properties. Any signaling of such
 information to the peer is up to an application-layer protocol and
 considered out of scope of this document.

 For example, if an application requests to transfer fixed-size
 messages of 100 bytes with partial reliability, this needs the
 receiving application to be prepared to accept data in chunks of 100
 bytes. If, then, some of these 100-byte messages are missing (e.g.,
 if SCTP with Configurable Reliability is used), this is the expected
 application behavior. With TCP, no messages would be missing, but
 this is also correct for the application, and the possible
 retransmission delay is acceptable within the best effort service
 model. Still, the receiving application would separate the byte
 stream into 100-byte chunks.

 Note that this usage of messages does not require all messages to be
 equal in size. Many application protocols use some form of Type-
 Length-Value (TLV) encoding, e.g. by defining a header including
 length fields; another alternative is the use of byte stuffing
 methods such as COBS [COBS]. If an application needs message
 numbers, e.g. to restore the correct sequence of messages, these must
 also be encoded by the application itself, as the sequence number
 related transport features of SCTP are no longer provided (in the
 interest of enabling a fall-back to TCP).

 For the implementation of a TAPS system, this has the following
 consequences:

 o Because the receiver-side transport leaves it up to the
 application to delimit messages, messages must always remain
 intact as they are handed over by the transport receiver. Data
 can be handed over at any time as they arrive, but the byte stream
 must never "skip ahead" to the beginning of the next message.

Welzl & Gjessing Expires April 25, 2018 [Page 47]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

82 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 o With SCTP, a "partial flag" informs a receiving application that a
 message is incomplete. Then, the next receive calls will only
 deliver remaining parts of the same message (i.e., no messages or
 partial messages will arrive on other streams until the message is
 complete) (see Section 8.1.20 in [RFC6458]). This can facilitate
 the implementation of the receiver buffer in the receiving
 application, but then such an application does not support message
 interleaving (which is required by stream schedulers). However,
 receiving a byte stream from multiple SCTP streams requires a per-
 stream receiver buffer anyway, so this potential benefit is lost
 and the "partial flag" (the transport feature "Information about
 partial message arrival") becomes unnecessary for a TAPS system.
 With it, the transport feature "Notification to a receiver that a
 partial message delivery has been aborted" becomes unnecessary
 too.
 o From the above, a TAPS system should always support message
 interleaving because it enables the use of stream schedulers and
 comes at no additional implementation cost on the receiver side.
 Stream schedulers operate on the sender side. Hence, because a
 TAPS sender-side application may talk to an SCTP receiver that
 does not support interleaving, it cannot assume that stream
 schedulers will always work as expected.

A.3.2 . Stream Schedulers Without Streams

 We have already stated that multi-streaming does not require
 application-specific knowledge. Potential benefits or disadvantages
 of, e.g., using two streams over an SCTP association versus using two
 separate SCTP associations or TCP connections are related to
 knowledge about the network and the particular transport protocol in
 use, not the application. However, the transport features "Choose a
 scheduler to operate between streams of an association" and
 "Configure priority or weight for a scheduler" operate on streams.
 Here, streams identify communication channels between which a
 scheduler operates, and they can be assigned a priority. Moreover,
 the transport features in the MAINTENANCE category all operate on
 assocations in case of SCTP, i.e. they apply to all streams in that
 assocation.

 With only these semantics necessary to represent, the interface to a
 TAPS system becomes easier if we rename connections into "TAPS flows"
 (the TAPS equivalent of a connection which may be a transport
 connection or association, but could also become a stream of an
 existing SCTP association, for example) and allow assigning a "Group
 Number" to a TAPS flow. Then, all MAINTENANCE transport features can
 be said to operate on flow groups, not connections, and a scheduler
 also operates on the flows within a group.

Welzl & Gjessing Expires April 25, 2018 [Page 48]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

83 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 For the implementation of a TAPS system, this has the following
 consequences:

 o Streams may be identified in different ways across different
 protocols. The only multi-streaming protocol considered in this
 document, SCTP, uses a stream id. The transport association below
 still uses a Transport Address (which includes one port number)
 for each communicating endpoint. To implement a TAPS system
 without exposed streams, an application must be given an
 identifier for each TAPS flow (akin to a socket), and depending on
 whether streams are used or not, there will be a 1:1 mapping
 between this identifier and local ports or not.
 o In SCTP, a fixed number of streams exists from the beginning of an
 association; streams are not "established", there is no handshake
 or any other form of signaling to create them: they can just be
 used. They are also not "gracefully shut down" -- at best, an
 "SSN Reset Request Parameter" in a "RE-CONFIG" chunk [RFC6525] can
 be used to inform the peer that of a "Stream Reset", as a rough
 equivalent of an "Abort". This has an impact on the semantics
 connection establishment and teardown (see Section 3.2).
 o To support stream schedulers, a receiver-side TAPS system should
 always support message interleaving because it comes at no
 additional implementation cost (because of the receiver-side
 stream reception discussed in Appendix A.3.1). Note, however,
 that Stream schedulers operate on the sender side. Hence, because
 a TAPS sender-side application may talk to a native TCP-based
 receiver-side application, it cannot assume that stream schedulers
 will always work as expected.

A.3.3 . Early Data Transmission

 There are two transport features related to transferring a message
 early: "Hand over a message to reliably transfer (possibly multiple
 times) before connection establishment", which relates to TCP Fast
 Open [RFC7413], and "Hand over a message to reliably transfer during
 connection establishment", which relates to SCTP’s ability to
 transfer data together with the COOKIE-Echo chunk. Also without TCP
 Fast Open, TCP can transfer data during the handshake, together with
 the SYN packet -- however, the receiver of this data may not hand it
 over to the application until the handshake has completed. Also,
 different from TCP Fast Open, this data is not delimited as a message
 by TCP (thus, not visible as a ‘‘message’’). This functionality is
 commonly available in TCP and supported in several implementations,
 even though the TCP specification does not explain how to provide it
 to applications.

 A TAPS system could differentiate between the cases of transmitting
 data "before" (possibly multiple times) or during the handshake.

Welzl & Gjessing Expires April 25, 2018 [Page 49]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

84 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 Alternatively, it could also assume that data that are handed over
 early will be transmitted as early as possible, and "before" the
 handshake would only be used for data that are explicitly marked as
 "idempotent" (i.e., it would be acceptable to transfer it multiple
 times).

 The amount of data that can successfully be transmitted before or
 during the handshake depends on various factors: the transport
 protocol, the use of header options, the choice of IPv4 and IPv6 and
 the Path MTU. A TAPS system should therefore allow a sending
 application to query the maximum amount of data it can possibly
 transmit before (or, if exposed, during) connection establishment.

A.3.4 . Sender Running Dry

 The transport feature "Notification that the stack has no more user
 data to send" relates to SCTP’s "SENDER DRY" notification. Such
 notifications can, in principle, be used to avoid having an
 unnecessarily large send buffer, yet ensure that the transport sender
 always has data available when it has an opportunity to transmit it.
 This has been found to be very beneficial for some applications
 [WWDC2015]. However, "SENDER DRY" truly means that the entire send
 buffer (including both unsent and unacknowledged data) has emptied --
 i.e., when it notifies the sender, it is already too late, the
 transport protocol already missed an opportunity to send data. Some
 modern TCP implementations now include the unspecified
 "TCP_NOTSENT_LOWAT" socket option proposed in [WWDC2015], which
 limits the amount of unsent data that TCP can keep in the socket
 buffer; this allows to specify at which buffer filling level the
 socket becomes writable, rather than waiting for the buffer to run
 empty.

 SCTP allows to configure the sender-side buffer too: the automatable
 Transport Feature "Configure send buffer size" provides this
 functionality, but only for the complete buffer, which includes both
 unsent and unacknowledged data. SCTP does not allow to control these
 two sizes separately. A TAPS system should allow for uniform access
 to "TCP_NOTSENT_LOWAT" as well as the "SENDER DRY" notification.

A.3.5 . Capacity Profile

 The transport features:

 o Disable Nagle algorithm
 o Enable and configure a "Low Extra Delay Background Transfer"
 o Specify DSCP field

Welzl & Gjessing Expires April 25, 2018 [Page 50]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

85 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 all relate to a QoS-like application need such as "low latency" or
 "scavenger". In the interest of flexibility of a TAPS system, they
 could therefore be offered in a uniform, more abstract way, where a
 TAPS system could e.g. decide by itself how to use combinations of
 LEDBAT-like congestion control and certain DSCP values, and an
 application would only specify a general "capacity profile" (a
 description of how it wants to use the available capacity). A need
 for "lowest possible latency at the expense of overhead" could then
 translate into automatically disabling the Nagle algorithm.

 In some cases, the Nagle algorithm is best controlled directly by the
 application because it is not only related to a general profile but
 also to knowledge about the size of future messages. For fine-grain
 control over Nagle-like functionality, the "Request not to bundle
 messages" is available.

A.3.6 . Security

 Both TCP and SCTP offer authentication. TCP authenticates complete
 segments. SCTP allows to configure which of SCTP’s chunk types must
 always be authenticated -- if this is exposed as such, it creates an
 undesirable dependency on the transport protocol. For compatibility
 with TCP, a TAPS system should only allow to configure complete
 transport layer packets, including headers, IP pseudo-header (if any)
 and payload.

 Security is discussed in a separate TAPS document
 [I-D.pauly-taps-transport-security]. The minimal set presented in
 the present document therefore excludes all security related
 transport features: "Configure authentication", "Change
 authentication parameters", "Obtain authentication information" and
 and "Set Cookie life value" as well as "Specifying a key id to be
 used to authenticate a message".

A.3.7 . Packet Size

 UDP(-Lite) has a transport feature called "Specify DF field". This
 yields an error message in case of sending a message that exceeds the
 Path MTU, which is necessary for a UDP-based application to be able
 to implement Path MTU Discovery (a function that UDP-based
 applications must do by themselves). The "Get max. transport-message
 size that may be sent using a non-fragmented IP packet from the
 configured interface" transport feature yields an upper limit for the
 Path MTU (minus headers) and can therefore help to implement Path MTU
 Discovery more efficiently.

 This also relates to the fact that the choice of path is automatable:
 if a TAPS system can switch a path at any time, unknown to an

Welzl & Gjessing Expires April 25, 2018 [Page 51]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

86 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

 application, yet the application intends to do Path MTU Discovery,
 this could yield a very inefficient behavior. Thus, a TAPS system
 should probably avoid automatically switching paths, and inform the
 application about any unavoidable path changes, when applications
 request to disallow fragmentation with the "Specify DF field"
 feature.

Appendix B . Revision information

 XXX RFC-Ed please remove this section prior to publication.

 -02: implementation suggestions added, discussion section added,
 terminology extended, DELETED category removed, various other fixes;
 list of Transport Features adjusted to -01 version of [TAPS2] except
 that MPTCP is not included.

 -03: updated to be consistent with -02 version of [TAPS2].

 -04: updated to be consistent with -03 version of [TAPS2].
 Reorganized document, rewrote intro and conclusion, and made a first
 stab at creating a real "minimal set".

 -05: updated to be consistent with -05 version of [TAPS2] (minor
 changes). Fixed a mistake regarding Cookie Life value. Exclusion of
 security related transport features (to be covered in a separate
 document). Reorganized the document (now begins with the minset,
 derivation is in the appendix). First stab at an abstract API for
 the minset.

 draft-ietf-taps-minset-00 : updated to be consistent with -08 version
 of [TAPS2] ("obtain message delivery number" was removed, as this has
 also been removed in [TAPS2] because it was a mistake in RFC4960.
 This led to the removal of two more transport features that were only
 designated as functional because they affected "obtain message
 delivery number"). Fall-back to UDP incorporated (this was requested
 at IETF-99); this also affected the transport feature "Choice between
 unordered (potentially faster) or ordered delivery of messages"
 because this is a boolean which is always true for one fall-back
 protocol, and always false for the other one. This was therefore now
 divided into two features, one for ordered, one for unordered
 delivery. The word "reliably" was added to the transport features
 "Hand over a message to reliably transfer (possibly multiple times)
 before connection establishment" and "Hand over a message to reliably
 transfer during connection establishment" to make it clearer why this
 is not supported by UDP. Clarified that the "minset abstract
 interface" is not proposing a specific API for all TAPS systems to
 implement, but it is just a way to describe the minimum set. Author
 order changed.

Welzl & Gjessing Expires April 25, 2018 [Page 52]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

87 of 89 Project no. 644334

Internet-Draft Minimal TAPS Transport Services October 2017

Authors’ Addresses

 Michael Welzl
 University of Oslo
 PO Box 1080 Blindern
 Oslo N-0316
 Norway

 Phone: +47 22 85 24 20
 Email: michawe@ifi.uio.no

 Stein Gjessing
 University of Oslo
 PO Box 1080 Blindern
 Oslo N-0316
 Norway

 Phone: +47 22 85 24 44
 Email: steing@ifi.uio.no

Welzl & Gjessing Expires April 25, 2018 [Page 53]

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

88 of 89 Project no. 644334

D1.3
Final Version of Services and APIs

Public
Rev. 1.0/ October 30, 2017

Disclaimer

The views expressed in this document are solely those of the author(s). The European Com-

mission is not responsible for any use that may be made of the information it contains.

All information in this document is provided “as is”, and no guarantee or warranty is given

that the information is fit for any particular purpose. The user thereof uses the information

at its sole risk and liability.

89 of 89 Project no. 644334

	List of Abbreviations
	Introduction
	The NEAT User API
	Overview
	Notation and presentation style

	API Primitives and Events
	NEAT Flow Initialisation
	NEAT Flow Establishment
	NEAT Flow Availability
	NEAT Flow Maintenance
	NEAT Flow Termination
	Writing and reading data

	Conclusion
	References
	NEAT Terminology
	Reasons for changes from D1.2
	Examples of Policy
	JSON format
	Profiles
	Examples
	Default Policy Profile
	Example of Transport Selection Properties
	Multihoming Transport Protocol

	Internet-draft: A Minimal Set of Transport Services for TAPS Systems

